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ABSTRACT 

The objective of this project is to develop the capability of symbolically generating an 
analytical model of a wind turbine for studies of control systems. This report focuses on a 
theoretical formulation of the symbolic equations of motion (EOMS) modeler for 
horizontal-axis wind turbines. In addition to the power train dynamics, a generic 7-axis 
rotor assembly is used as the base model from which the EOMS of various turbine 
configurations can be derived. A systematic approach to generate the EOMS is presented 
using d’Alembert’s principle and Lagrangian dynamics. A Matlab M file was 
implemented to generate the EOMs of a two-bladed, free-yaw wind turbine. The EOMS 
will be compared in the future to those of a similar wind turbine modeled with the 
Yawdyn code for verification. This project was sponsored by Sandia National 

Laboratories as part of the Adaptive Structures and Control Task. This is the final report 
of Sandia Contract AS-0985. 
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1.0 Introduction 

Wind turbine control systems for power regulation and structural load mitigation are 

commonly treated as two decoupled and distinct problems. Much of the literature on wind 

turbine controls makes use of simplified turbine models to avoid the complexity of turbine 

dynamics. Turbine models without power train dynamics, for example, are typically used to 

deal with aero-elastic control systems [Block and Gilliatt 1997]. The design of variable- 

speed control algorithms, on the other hand, is generally done using only power train 

models [Thiringer and Linders 1993, Leithead et al. 1994a, Cardenas et al. 1996]. 

Consequently, the performance of control algorithms designed with “improper” models is 

questionable. Without an adequate dynamics model, it is not surprising to see that a 

“properly” designed control algorithm can actually be the major contributor to excessive 

fatigue loads in the turbine. 

In the commercial sector, it is a common practice to design and analyze wind turbine 

control algorithms by coding proprietary programs. Unless collaborated efforts are 

organized, modeling efforts for turbines of similar configurations are repeated at different 

companies. In addition, repeated modeling efforts are needed to explore different design 

options for a new or existing turbine. For instance, to evaluate the benefits versus 

disadvantages of adopting a fill span pitch or a partial span pitch (aileron) controller for a 

particular wind turbine, two programs have to be coded for computer analysis. This 

problem can be illustrated by NREL’s recent effort to modifi the FAST code to integrate 

the dynamics of an aileron control system into the structure code wright 1995, Stuart 

1996]. Modeling wind turbines and verification of these models demand tremendous 

amounts of resources from the wind turbine industry. Consequently, simplified EOMS, e.g., 

only the EOMS of the subsystems to be studied, are generally used, and they might suffer 

Ii-em loss of accuracy and sometimes yield unreliable designs. 

From a control engineering point of view, many advanced control methodologies (such 

as the robust adaptive controllers and neural-network fhzzy logic controllers) might provide 

better petiormance for wind turbine applications than the commonly used proportional- 

integral-denvative (PID) controllers ~ongers and Dijkstra 1992, Wu and De La Guardia 

1996]. Many of the structural instabilities and load problems of contemporary wind 

turbines might be alleviated, or even avoided, if a different control methodology were used. 

For example, some European-designed constant-speed wind turbines (for 50Hz line 

frequency) installed in US wind farms (with 60Hz line frequency) might perllorm much 

better, in terms of fatigue life and power production, if they were operated as variable- 

7 



speed wind turbines. For variable-speed wind turbines and a new generation of 

continuously controlled machines, the control problems become multi-variable and much 

more complex than those of constant-speed wind turbines. Instability caused by improper 

use of multi-variable controllers might result in catastrophic failures. Carefld study and fill 

understanding of turbine control systems are crucial to the economics and reliability of these 

machines. 

Two structural codes, ADAMS/WT and BLADED @lliott 1996, Garrad 1996], for 

wind turbine design and analysis are capable of integrating limited control laws into their 

computer models. However, both codes provide only time domain simulations of the 

pefiorrnance of the controllers. They do not offer linear analysis tools, such as transfer 

fimction, root locus, eigenvector analysis, stability margins, and power spectrum analysis, 

etc., that are critical to understanding the interactions between control systems and loads in 

wind turbines. Consequently, these codes are not adequate for control system design. 

The objective of this project is to develop the capability of generating symbolically the 

analytical model of a wind turbine for the development and analysis of wind turbine control 

algorithms. In addition to the power train dynamics, a 7-axis rotor assembly is used in this 

report as the base model fi-om which the EOMS of various turbine configurations can be 

derived. The fiture goal of this project is to develop a turnkey wind turbine modeler or an 

add-on package to a commercial software package like Matlab. The wind turbine modeling 

soflware will include a wind turbine configuration builder, a symbolic EOM builder, and 

interfaces to other engineering software. Users can create and modi~ interactively a wind 

turbine model by editing the parameter files describing the turbine configurations. The 

turbine modeler will then construct automatically the closed-form EOMS of the machine. 

The symbolic EOM builder generates explicit nonlinear differential equations rather than 

linear state matrices. Linear state matrices can be generated from the nonlinear EOMS 

analytically or numerically using Taylor series expansion and perturbation methods 

~alafoutis 1991, Siljak 1969, Ogata 1992]. The closed-form EOMS can be extremely 

itiormative when studying wind turbine performance at unusual operating conditions, such 

as the system’s behavior when the turbine is at a high yaw angle and yaw rate (where the 

inertial forces might dominate the turbine petiormance). Understanding control stability and 

reliability at extreme operating conditions is critical to the approval of wind turbine 

certifications, e.g., high yaw operations are part of the International Electrotechnical 

Commission standard test cases. A Matlab M file was implemented to generate the EOMS 

of a Ilee-yaw, two-bladed, teetered-rotor wind turbine. 
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This report focuses on the mathematical formulation of the turbine modeler. It is 

organized into six chapters. Chapter 2 discusses the basic components of a horizontal axis 

wind turbine (HAWT) and how various turbine configurations with different control 

options can be constructed from the basic components. Chapters 3 and 4 discuss the 

mathematical formulation of the EOM builder. The EOMS of a rotating blade and a two- 

bladed teetered-rotor wind turbine are generated using the mathematical formulation. 

Chapter 5 presents the computer programs and the EOMS of these two examples. A 

summary and conclusions are given in the final chapter. 
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2.0 c onstructirw a Horizontal Axis Wind Turbine (HAWT) Model 

To accommodate different machine configurations, the wind turbine modeler should 

be designed in a modular manner. A library of turbine components should be provided in 

the modeler. Wind turbines can be easily modeled by mixing components from the 

component library. Figure 1 depicts the block diagram of a HAWT model that includes a 

tower, rotor, power train, blades, aerodynamics forces, and various control modules. The 

arrows and their directions in the block diagram represent the inputs and outputs of each 

component module. The tower and the blades can be modeled either as continuously 

flexible beams or a collection of discrete elements depending on the modeling 

requirements. The term “rotor” is used in this report to represent collective y the nacelle 

assembly, hub, and teeter mechanism. The rotor is typically much stiffer than the tower 

and the blades, so it is modeled as a collection of discrete rigid bodies in this study. The 

power train consists of a combination of low- and high-speed shafts, gear boxes, brakes, 

and generators, depending on its configuration. Mechanical brakes at the low- and high- 

speed shafts can be modeled as external torques applied to the azimuth axis at the rotor side 

and the generator side, respectively. Equal but opposite moments will also be added to the 

component, e.g., the nacelle, where the brakes are mounted. Figure 2 shows a HAWT 

model consisting of nine basic components: namely, the tower (1), bed plate (2), nacelle 

(3), low-speed shaft (4), gearbox (5), high speed shaft (6), generator (7), hub (8), and 

blades (9). Notice that these turbine components can be viewed as components connected 

in series as an open-chain kinematic mechanism, see Figure 3, and only rotational motion is 

observed between any two adjacent components. To facilitate a systematic approach that 

can be programmed to generate the EOMS symbolically, all components in a wind turbine 

model are constrained to have no more than one degree of freedom ( 1 -DOF) in motion with 

respect to the component upon which it is mounted (called the lower neighbor). For a 

turbine component having more than 1 -DOF relative to its lower neighbor, it is modeled as 

a collection of several 1 -DOF components. Examples are the wind turbine towers and 

blades which can pitch, yaw, and roll with respect to their lower neighbors, i.e., the ground 

and hubs, respectively. 

2.1 The Tower 

A wind turbine tower can be modeled as a continuously flexible beam or as multiple 

sections of discrete rigid bodies jointed by springs and dampers. The spring and damper 

represent the structural stiffness and damping of the tower, respectively. The mathematical 

formulation discussed in chapters 3 and 4 supports a discrete tower model. A continuous 
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flexible tower model can be found in the book by Junkins and Kim [1993]. The 

aerodynamic forces, applied directly to the tower and transmitted from the rotor, and the 

inertial forces due to turbine motion are considered as external forces driving the tower 

motion, i.e., the inputs to the tower module as shown in Figure 1. The position and 

velocity at the top of the tower, to where the positions of the rest of the turbine components 

are referenced, are thus the outputs of the tower model. 

A discrete tower model consists of a number of rigid bodies connected in sequence. 

Each tower segment can have 3 rotational DOF in motion with respect to its lower 

neighbor. To comply with the 1 -DOF relative motion between any two adjacent turbine 

components as discussed previously, a 3-DOF tower segment is represented by three 1- 

DOF rotational joints (see Figure 4). The rotation axes of the three mutually perpendicular 

joints intersect at a point. It is the center of rotation of the combined “3- DOF” joint. 

Notice that if three 1 -DOF joints are used to simulate a 3-DOF joint, the rotation angles of 

the 1 -DOF joints must be limited to small angles, typically less than 15 degrees, to ensure 

the accuracy of the model. Because of this small angle limitation, a softer tower must be 

modeled with a larger number of rigid tower segments for better modeling accuracy. 

Another factor determining the number of rigid tower segments is the number of mode 

shapes that need to be included in the tower model. Nevertheless, details of the tower 

model are outside the scope of this study. 

2.2 The Power Train 

The power train of a wind turbine consists of a combination of low and high speed 

shafts, brakes, gearboxes, and generators. Since the brakes are modeled as external torques 

instead of physical devices in this study, they are discussed in Chapter 4. Some wind 

turbines utilize coupling devices to provide compliance to sharp impacts in the drive train. 

However, coupling devices are not commonly used in utility-scale wind turbines because of 

their poor efficiencies. They are not discussed in this report. 

2.2.1 The Drive Train Dynamics 

The drive train dynamics relate the generator torque to the mechanical torque produced 

by the wind. The drive train in a wind turbine can be modeled either as a solid drive train 

or as two flexible shafts joined by the gearbox, depending on the application. For a 

constant-speed wind turbine, the solid drive train is an appropriate assumption. However, 

flexible shafts are necessary in the analysis of variable-speed operations [Hinrichsen and 
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Nolan 1982, Leithead et al. 1993]. To simplify the drive train dynamics, gears and shafts in 

the gearbox are assumed to be rigid bodies. Their mass moment of inertia and damping are 

lumped into that of the low-speed shaft [Palm 1986]. 

A. First-order Drive Train Model 

The solid drive train assumption yields a simple first-order drive train model. The 

dynamics of the model in the Laplace domain are given by, 

T. 

[) 

I 
—- T~=sx ;+I~ X(L)g , 

n 
(1) 

where 

T~ is the mechanical torque applied to the low-speed shaft by the rotating rotor, 

T~ is the electrical torque applied to the high-speed shaft by the generator, 

n is the gearbox ratio, 

s is the Laplace operator, 

11 and ~ are the mass moment of inertia of the low- and high-speed shaft about the rotation 

axis, respectively, and 

Ug is the generator speed. The rotor speed is ti~ /n. 

B. Flexible Drive Train Model 

With flexible shafts, the drive train dynamics become a third-order system. The 

EOMS can be written as, (see Figure 5) 

k k 
:Is+bl+ti -~ o 

s s 

n k~ 
o -(I~s +b~ ++) 

s 

I kl k~n 
— -_!(k1+n2k~) — 
s s s 

J 

where 

kl and k~ are the torsional stiffness of the low- and high-speed shafts, respectively 

(2) 

b, and b~ are the viscous friction coefficients of the low- and high-speed shafts, respectively 

O, is the rotor speed, 
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o)~ is the angular velocity of the low-speed shaft at the gearbox side, and 

cog is the generator speed. 
— 

2.2.2 Induction Generators 

There are many articles discussing ways to model generator behavior [Fitzgerald et al. 

1990, Leithead and Connor 1994b, Zhang 1994]. Three induction-generator models, a 

steady- state, a first-order, and a fourth-order model, are summarized in this report. All 

models are for squirrel-type induction motors whose torque is a function of slip. The slip S 

relates the generator speed o~ to the grid frequency coo, i.e., 

(3) 

The utility grid is assumed to be a strong network in deriving these models. Since the 

generator dynamics are dictated by the drive-train dynamics [Hinrichsen and Nolan 1982, 

Wu 1997] in a strong network, a low-order generator model is adequate for quasi-static 

turbine analysis and control purposes. However, high-order generator models are necessary 

in the analysis of startup and shutdown operations, grid failure, power quality issues, and 

advanced generator features, such as active slip controls. 

A. Steady-State Model 

The steady-state model based upon the Thevenin equivalent circuit is the most commonly 

seen generator model [Fitzgerald et al., 1990]. This model yields the following algebraic 

equation describing the generator torque as a function of slip: 

where 

p is the number of generator poles, 

X*l =xL1+xm, 

X22 = Xu+xm, 

(4) 

co. is the grid frequency in rad/see, 

RI and X~l are the stator resistance and leakage reactance, respectively 
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Rz and XU are the rotor resistance and leakage reactance, respectively 

X~ is the magnetizing reactance, 

S is the generator slip, (Equation 3) and 

V is the line voltage at the generator bus in phasor notation, 

This method does not take into account any non-linearities in the generator and 

contains no dynamic information, e.g., the electromagnetic transients. 

B. First-Order Model 

The dynamic model for a first-order approximation of the generator torque is given by 

the equation 

‘Tg=+[Tg+D’@’+l ~ (5) 

where 

~ is the generator time constant, 

D, is the slope of the generator torque/speed curve. It is determined from the static state 

model, i.e., Equation 4, and 

s is the Laplace operator. 

The first-order model contains some dynamic information about the generator, but 

assumes a linear relationship between the slip and the generator torque. If the drive train is 

assumed to be a solid shaft, this model alone does not provide much meaningful 

information compared to the steady-state model. However, if a flexible drive train model is 

used, this first- order approximation simulates some dynamic interactions, such as resonant 

frequencies, between the drive train and the generator. It is recommended that it be used 

with the flexible drive train model. 

C. Electromagnetic Transient Model 

To include electromagnetic transients in the power train model, the generator 

discussed in Zhang’s report [Zhang 1994] is adopted in this study. The model bases its 

theory on Park’s equation, which translates the three-phase voltage and current references 

and rotating components into a stationary quadrature and direct-axis frame, i.e., the d-q 

frame. That is, 
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v ql 

1 

— 

‘dl 

2 -1 -1 —— 
733 

()-@@ —— 
33 

v al 

‘bl 

v c1 

where 

v~l and v~l are the line voltages in the q-d frame, and 

V,l, v~l, and V,l are the 3-phase line to line voltages in phasor notation. 

The derived equations for the generator torque are fourth order and reduce to the 

following form, 

W+ _ , _ 
—–xl 

dt – @ovql + 
[ *I[HX1+[E2)X3 

~=x’2=00vd1+[[H2-’11+[=.:lx4 
*=X’3= ‘40e+[%21x1+[[00
~’x’,=-x,oe+[::a ‘2+[[00T)[*-’llx

where 

~qlY ~dl> *q2Y $d2> ‘e ‘e ‘lUx linkages Per ‘econd ‘f ‘he q-d ‘tator ‘d rotor ‘indings 

[ 

xL1xuxm 
Xqd = 

xL,xm + Xuxm + XL1XL2 1 

(6) 

(7) 

(8) 

and 

(9) 
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where U, is the electrical speed of the generator and cog is the mechanical speed calculated 

from Equation 1 or 2. 

The resulting generator torque T~ needed in Equations 1 and 2 is given by 

where i~l and i~l are the q-d currents in the stator winding and are given by 

$ql _ ‘qd$ql _ ‘qd*q2 
iql = — 

XL1 x 2 XL1XL2 
L1 

$dl ‘qd*dl _ ‘qd$d2 

ldl=— - XL1 x 2 XLIXM “ 
L1 

(lo) 

(11) 

The generator, modeled in Equation 4,5 or 10, together with the drive train, modeled in 

Equation 1 or 2, form the power train model for a constant-speed wind turbine. The power 

output to the utility grid is given by 

P~=T~co~ . 
(12) 

For a power train with an electromagnetic transient generator model, the power output to 

the utility grid is given by, 

‘g =‘~ (Vqliql ‘Vdlidl) - (13) 

If the generator efficiency is known, the power output can be adjusted accordingly using a 

lookup table. 

2.2.3 Power Electronics for Variable-Speed Wind Turbines 

When a power electronics (PE) unit is used to regulate the generator torque (and the 

power output), the generator and the PE together can be considered as a torque actuator. In 

addition, the response of the torque actuator is much faster than that of the drive train, 

typically an order of magnitude. The torque actuator can be modeled as an ideal one, 
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which applies the desired (or commanded) torque to the high-speed shaft precisely and 

instantaneously, i.e., (see Figure 1) 

T,=T~ . 
(14) 

2.2.4 Geometric Location of the Power Train 

Some wind turbine configurations incorporate a rotor offset (a non-zero c distance as 

shown in Figure 2) and an uptilt angle (a constant angle about the z~ axis) to 

aerodynamically balance the rotor assembly and increase the blade-tip and tower clearance. 

The a and b parameters, which are measured along the xl and ZI axes, respectively, locate 

the tilt axis z~ of the bed plate. Notice that the X1-zl frame is located at the top of the 

tower, whose instantaneous position and velocity are determined from. the tower model. 

Figure 2 shows positive a and b values. The geometry parameter c represents the offset of 

the low-speed shaft from the yaw axis. It is measured along the yl axis. Figure 2 shows a 

positive c value. To model a rotor without an offset, c is set to zero. Parameter d 

represents a vertical offset of the low-speed shaft from the tilt axis. It is measured along 

the ZI axis. Figure 2 shows a positive d value. The sum of the b and d values represents 

the clearance distance between the low-speed shaft and the base of the nacelle. For a wind 

turbine with a constant tilt angle, the sense of the rotation is measured about the z~ axis by 

following the right-hand rule. A zero tilt angle places the low-speed shaft parallel to the 

nacelle. A positive tilt angle represents an up-tilt configuration, and a negative value 

represents a down-tilt configuration. 

2.3. The Rotor Dynamics 

The rotor model, see Figure 1, studied in this report includes the nacelle assembly, 

hub, and teeter mechanism. It does not include blades here because blades are considered 

as independent wind turbine components in this report. The rotor dynamics are the most 

complex among all wind turbine subsystems because the rotor can have many DOFS 

relative to its adj scent components. It relates the aerodynamics forces to the motion and 

loads in the rotor. The rotor studied in this report includes seven rotation axes, as shown in 

Figure 2. The nacelle has yaw and tilt motion relative to the tower; the hub has azimuth 

and teeter motion relative to the nacelle; and the blade root of each blade can have three 

DOF relative to the hub. The following sections describe the geometric parameters of the 

rotor assembly. Derivations of the EOMS of the rotor are discussed in Chapters 3 and 4. A 
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detailed drawing of the rotor assembly is given in Figure 6. 

2.3.1 The Bed P1ateand the Nacelle 

The bed plate can yaw about the Z2 axis with respect to the tower, and the nacelle can 

tilt (or pitch) about the z~ axis with respect to the bed plate, see Figure 6. Notice that the 

bed plate and the nacelle are generally considered as one component (called nacelle) in 

most wind turbine models that allow 2-DOF components. However, to conform to the 

constraints of one DOF per component in our models, the bed plate is introduced to 

accommodate the yaw motion, and the nacelle that houses the drive train allows tilt motion 

with respect to the bed plate. 

2.3.2 The Hub, Teeter Axis, Overhang, and Undersling 

For a two-bladed rotor, the hub assembly may have one rotational DOF, i.e., the teeter 

motion, about the z~ axis with respect to the low speed shaft. The teeter motion allows the 

blades to flap and/or pitch to remove or reduce gyroscopic forces and bending moments 

exerted on the low speed shaft. The angle between the teeter axis and the line 

perpendicular to the spanwise axis of the blades is known as the 63 angle (see Figure 7). 

The 53 angle is measured about the Zd axis in the right-hand sense to align the teeter (z~) 

axis to the X4 axis, i.e., parallel to ZO as in the configuration shown in Figure 6. Figure 6 

shows a negative 53 angle, and Figure 7 shows a positive 63 angle. Notice that the direction 

of z~ is defined so that the rotation of the rotor follows the right-hand rule. When as = O, 

the teeter motion causes the blades to flap in and out of the rotation plane. On the other 

hand, the teeter motion causes the blades to pitch when 63 = 90°. If 53 is between O and 90°, 

the teeter motion causes the blades to flap and pitch simultaneously. 

The location of the teeter pin (or the intersection point of the teeter axis and the low- 

speed shaft) is determined by the overhang and undersling distances. The terms overhang 

and undersling do not appear to have clear definitions in the wind turbine industry, 

regardless of their popularity in the literature. In this study, the term overhang (e shown in 

Figure 6) is used as a measure of the distance along the low speed-shaft (ZA axis) from the 

point T immediately below the tilt axis to the intersection points of the span axes of the 

blades at a zero coning angle. In general, a long overhang gives more geometric clearance 

between the blade-tip and the tower. It also introduces a greater bending and yaw moment 

to the low-speed shaft and tower due to gravity and aerodynamic forces. 
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Although it is not a standard, undersling is defined as the distance from the 

intersection point of the span axes of the blades (as thes point in Figure 6) to the teeter pin 

in some literatures. In practice, the intersection point dynamically changes due to the effect 

of varying aerodynamic blade loads. The s’ point in Figure 6 illustrates the intersection 

point at some pre-cone angle. For precision, the term underling@ is used here as a 

measure of the distance along the low-speed shaft from the points, i.e., the intersection 

point of the span axes of the blades at a zero coning angle, to the teeter pin. Undersling can 

have either a positive or negative value (measured along the Zq axis), depending on a 

downwind or upwind configuration. Figure 6 shows a positive ~value. An 

aerodynamically balanced rotor will place the teeter pin coincident with the center of 

gravity of the rotor (CGR) assembly to reduce the effect of the Coriolis force transmitted to 

the low-speed shaft. Since the CGR dynamically shifts due to the flexibility of the blades 

during operation, a good rotor design will place the teeter pin in the center of the region 

where the CGR is dynamically moving. 

The points at which the blades are attached to the hub are located by the parameter g 

measured from the point S to the blade root. The parameter g is also known as the hub 

radius and always has a positive value. 

2.4 Blades 

Similar to the tower model, a blade can be modeled as a continuously flexible beam or 

a collection of rigid segments jointed in sequence. A blade has 3-DOF, i.e., pitch, flapping, 

and lead-lag bending at the root with respect to the hub. Like a flexible tower, the 3-DOF 

blade root is modeled as three mutually perpendicular 1-DOF joints intersecting at the 

blade root point, see Figure 6. The blade feather has 1 DOF, i.e., the pitch motion about 

the Zb axis with respect to the hub. The blade coning has 1 DOF, i.e., the coning motion 

about the z, axis with respect to the feather. The blade torsion has 1 DOF, i.e., the 

edgewise lead-lag bending motion about the z~ axis with respect to the blade coning. 

Springs and dampers can be attached to any of the three axes to model the structural 

stiffness and damping at the blade roots. In this study, both the blades and tower are 

modeled in separate modules from the rotor assembly. The rotor model outputs the 

positions and velocities at the blade roots to the blade models, which return the 

aerodynamics forces at the blade roots, or at prescribed geometric locations measured from 

the blade roots. Interactions between the blade models and the rotor model are explored 

more in Chapter 4. 
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2.5 Deviations From the Example Model in Other Wind Turbine Configurations 

The relative motion of the turbine components with respect to their neighboring 

components can be inhibited by locking the corresponding axes to model wind turbines of 

different configurations. For example, by locking the tilt axis, teeter axis, coning axis, and 

pitch axis, a typical 2-bladed or 3-bladed rigid-rotor, stall-regulated, free-yaw wind turbine 

can be modeled. A teetered-rotor configuration can be obtained from the same model by 

freeing the motion about the teeter axis. Freeing the pitch axis simulates full or partial 

pitch motion. Although the example model in Figure 2 consists of only nine basic 

components, combinations of these basic components yield virtually unlimited turbine 

configurations. 

2.6 Driving Forces 

Aerodynamic, actuator (or control), and external forces can be added to any of the 

rotation axes described above to model springs, dampers, brakes, and viscous and coulomb 

friction. For example, by adding spring and damping forces to the blade axes, constrained 

motion of the blades is modeled to simulate coning, in-plane and out-of-plane bending. 

Active controlled wind turbine configurations can be modeled by adding control dynamics 

to any of the rotation axes. For example, an active yaw or pitch-controlled wind turbine 

can be studied by adding control dynamics to the yaw or pitch axis. By adding control 

dynamics to tilt and/or coning axes, advanced wind turbine configurations with active 

up/down tilt and coning control systems can be simulated. The controllers incorporated in 

the model can be referenced collectively, i.e., same pitch angles for all the blades, or 

independently to yield optimal modeling flexibility of the turbine modeler. 

20 



3.0 Kinematics of the Rotor Assembly of a HAWT 

3.1 Kinematics of Structural Components 

By placing the kinematic constraints of 1 DOF between any pair of adjacent 

components, the wind turbine model described in Section 2 can be viewed as an open-chain 

kinematic linkage where the tower is rigidly attached to earth (or the inertial frame) and the 

upper bodies of the linkage (or the blades) are free to move in space, as illustrated in Figure 

3. For the remainder of this report,’ the term “link” is used as a generic name for any one of 

the turbine components. With this arrangement the kinematic relationship of the 

neighboring bodies can be systematically established by assigning a body-attached 

orthonormal coordinate system to each of the links of the wind turbine using the 

Denavit-Hartenberg (D-H) convention [Denavit and Hartenberg 1955]. This convention 

allows the spatial descriptions, i.e., kinematics, of the wind turbine to be established by 

following a mechanical procedure that is independent of turbine configurations. 

Each set of coordinates, (xi, y, zi) denoted by {i}, or called Frame {i}, is rigidly 

attached to the body (i) and rotates along with the body, and therefore is called a “body- 

attached” coordinate system. The z-axes of the frames are always aligned with the rotation 

axes of the joints (see Figure 6). If the link is unidirectional such as the blades, the 

direction of the link rotation is determined by the z-axis in the right hand sense. After 

establishing the Cartesian frames, four parameters (~i , bi , ei , di ), namely, the twist angle, 

the link length, the rotation angle, and the link offset, respectively, are determined for each 

body frame {i}. Definitions of these parameters are given as follows, 

1. ai is the angle of rotation about xi.l in the right-hand sense to align zi.l to zi. Notice 

that xil-zi.l frame, or {i-1 } frame, is assigned to link i-1, the lower neighbor of link 

i. 

2. bi is the distance along xi-l ,from the joint axis zi.l, to joint axis zi. 

3. Oi is the angle of rotation about zi in the right-hand sense to align xil to xi, 

4. di is the distance along Zi from the intersection point of xi-l and Zi to the origin of the 

frame {i}. 

Details and examples of the link parameters can be found in many kinematics and robotics 

books [Craig 1989, Balafoutis and Patel 199 1]. The D-H link parameters for the two- 

bladed, teetered rotor HAWT shown in Figure 6 are given in Table 1. 

The configuration, or spatial transformation, matrix describing the kinematic relationship 

between link i and its lower neighbor (link i- 1 ) is given by 
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i-lci = i-lRi ici” + i-lp. 
1? (15) 

where 

‘-lCi is a 3x 1 position vector of a point C fixed on link i (denoted by the lower right 

subscript in our notation) in a 3-D space measured and expressed with respect to Frame {i- 

1 } (denoted by the upper left superscript). That is, it is a vector from the origin of Frame 

{i-1 } to the point C on link i, expressed with respect to Frame {i-1 }, 

i-lRi = 

Cos(ei) -sin(fIi) o 

Cos(cti) sin(Oi) Cos(cti) cos(6i) -sin(ai) 

sin(cti) sin(fli) sin(ai) cos(6i) cos(cti) 

(16) 

‘-lC*I is a position vector of a point C fixed in link i measured in Frame { i }, expressed with 

respect to Frame {i-1 }. That is, it is a vector from the origin of Frame { i } to the point C on 

link i. It is a constant vector since Frame {i} is fixed to link i. Notice that the upper right 

superscript * is used for the vectors that are measured with respect to their own body 

frames. 

Let 

‘-lPi = [ bi ‘d] sin(cti) di COS (Ui ) ]’ (17) 

be the position vector of the origin of Frame {i} measured and expressed with respect to 

Frame {i- 1}. Notice that the symbol C is used for an arbitrary point on a link, e.g., the 

center of mass, and the symbol P is used for the origin of a body frame in our notation (see 

Figure 8). 

After the user specifies the geometric configurations, (i.e., the values of the 

parameters bi , di, 63, and ~i)> and the DOFS of a turbine, (i.e., specifies whether @i is a 

constant or a variable), kinematic relationships among the turbine components can be 

derived systematically by substituting the D-H link parameters as shown in Table 1 into 

Equations 15 through 17. 
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Table 1 D-H link tmrameters for the HAWT model in Figure 6. . 

Link ~i bi e, di Link Name (Remark) 

1 Reference frame at the tower top 

2 0 0 q2 b Yaw 

3 90° a -90°+q~ -c Tilt 

4 -90° d -90-63+q4 e+f Azimuth 

5 90° 0 -90°+q5 o Teeter 

6 90°-83 f 180°+q~+zl -g Pitch + blade twist ~1 at root (for blade 1) 

7 -90° 0 90°+q7+qo o Coning (for blade 1), qO = precone 

8 -90° 0 90°+q8 o Bending (for blade 1) 

6’ -90°-53 f 180°+q&+~z -g Pitch + blade twist r2 at root (for blade 2) 

7’ -90° 0 90°+qT+q~ o Coning (for blade 2), qO = precone 

8’ -90° 0 90°+q*, o Bending (for blade 2) 

3.2 Linear Velocity and Acceleration 

The angular velocity o i of a link i with respect to the inertial frame can be expressed 

as a sum of the relative angular velocities of all lower links. That is, 

i i 

j ~q’j 7 Oi =x ORj Jq’ = 
j=l ,=1 

(18) 

where 

J ‘ – O 0 q’.][, is the angular velocity of link j about joint axis j, qj-[ 

‘R. = ‘Rl lR: 2R~ 3R . . J-lR 
4 j , and 

q’j’ A ‘q’, = ORj ‘q’j 

Notice that the upper-left superscript is omitted if it is O to simplify the notation. So zj 

represents the unit vector of Frame {j} expressed with respect to the inertial frame. Let ri 

be the position vector of the center of mass of link i (measured 

to the inertial frame, see Figure 8). The position vector can be 

and expressed with respect 

written as 
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ri =5 ORj_lJ-lPj + ‘Ri ‘Ci* =5 Pj” +Ci* , 
j=l j=l 

(19) 

where 

Pj* = OPj* z ‘Rj.l ‘-lPj , is the position vector of the origin of Frame {j} measured in Frame {j- 

1 } expressed with respect to the inertial frame, and 

Ci”=o Ci* = ‘Ri ‘Ci* , is the position vector of the center of mass of body i measured in 

Frame {i} expressed with respect to the inertial frame. 

The linear velocity and acceleration of link i at its center of mass, observed in the 

inertial frame, can then be derived by taking first and second time derivatives of Equation 

19. 

i 

vi =x (@j_l * Pj* 
) 
+Q)i *C. * 1 

j =2 

i 

ai=~ ( Q“j_l * Pj* ) j =2 

i “-1 

+ 
+ ‘k-] *q’k)* ‘j* 
j =’3 k =2 I 

‘i[@j-l *( ‘j-l * ‘j*)] 
j =2 

+Q”i * Ci” 

‘i(”j-l *q’j)* ci* 

‘:*(”i* c;) 

where 

Q“i + q“j 

j=l 

(20) 

(21) 

1 

(22) 

and q“j A ‘qJ’j = ORj ‘q”j ~ ‘q”j = [0 O q“j]’ is the angular acceleration of link j about joint axis j. 
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Although Equation 21 seems complicated, it is computationally efficient (using a linear 

algebra software package) and highly structured. The first and fourth terms in Equation 21 

represent the linear acceleration components due to the angular acceleration of the links 

lower than i. The second and fifth terms are the linear acceleration components due to the 

centrifugal acceleration of the lower components. The third and sixth terms correspond to 

the Coriolis acceleration due to the linear motion of the lower links. 
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4.0 Dynamics of the Rotor Assembly of a HAWT 

4.1 Structural Dynamics 

In deriving the EOMS of a HAWT, the generalized d’Alembert (GD) formulation is 

applied. Recall the well-known Lagrange equation 

[1 d dL i3L —- — ML], = ~ ~q ~ =T~, s = 1,2,3,...,n 
aq, 

(23) 

where 

La(L), denotes the Lagrangian operator applied to a system L with respect to a generalized 

coordinates, 

L = Lagrangian function of the system L = total kinetic energy K - total potential energy V, 

q, = generalized coordinate at the joints where the system is free to move 

q’, = first time derivative of the generalized coordinate, q, 

~, = effective force (or torque) applied to the system at joints. 

The d’Alembert principle [Ogata 1992] states that the external forces [or torques (~)] 

applied to a multi-body system must be equal to the inertial forces [or torques (M)] of the 

system, measured with respect to the independent axes describing the degrees of freedom 

of the system, for the system to be in dynamic equilibrium. That is 

~~=M s! s=12,n. , , . . (24) 

The wind turbine components considered in this study only have rotational motion 

relative to their lower neighbors. Only the resultant torques at the joints will be considered 

for the EOMS of the system. The external torques considered in this study are the torques 

caused by the aerodynamic forces and moments T=e, spring and darnper torques T,p and T~a, 

respectively, actuator torques T=C, and torques transmitted from the upper links Tfr. Notice 

that the energy-stored springs and the energy-dissipating dampers and brakes are 

considered as external torques in this formulation. These mechanisms apply equal but 

opposite torques to two links of the turbine where they are mounted. These torques will be 

discussed more in detail later. The inertial torques are those caused by translational and 

rotational motion as results of external forces, and motion caused by gravitation force on 
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the individual turbine components, denoted by M,, M,, and M~, respectively. Equation 24 

can be rewritten as 

Mt +Mr +Mg, =Tae +T,p, +Tda +Tac +Tfr , s = I,z,q,...,n 
s s s s SS (25) 

where the letters represents the generalized coordinates describing the DOF of the system. 

Recall that 

L= K- V= Kt+K, -V , (26) 

where 

& is the total kinetic energy due to the translational effect, i.e., the linear translation of all 

of the turbine components, and 

I& is the total kinetic energy due to the rotational effect, i.e., the angular rotation of all of 

the turbine components. 

Substituting Equation 26 into Equation 23, 

La[L], = La[KJ, + La[K,], - La[V], = ~, . 

If Equation 25 is compared with Equation 27, one obtains 

( 
~~ = Ta~ + T$P, + Td~ + TaC + T f?, ) 

effective, s =1,2,3,... ,n s s s 

(27) 

(28) 

M, =La[KJ, 

M:= La[KI], 

M~s = - La[V], . 
s 

Substituting Equation 28 into Equation 25, 

Mt +M,,+M~,=~, . 
s (29) 

Equations 25 and 28 are two important relations that form the mathematical basis of the 

automatic EOM builder. 
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4.2 Inertial Torques 

4.2.1 Inertial Torque Due to Translational Effect M, 

The kinetic energy of wind turbine component i, i=l ,2,3, . . . . n, with mass mi, due to its 

translational motion can be expressed as: 

Kt, = ~mi vi” vi , (30) 

where v i is the linear velocity of component i at its center of mass, see Equation 20. The 

total kinetic energy of the wind turbine due to translational motion can be written as a 

summation of the individual components. That is, 

‘t=+ $ ‘i ‘i’vi 4 

1 

If the Lagrangian operator is applied to the above equation with respect to generalized 

coordinates (see Equation 23), one obtains 

M, =~{ miaio[ z,”( ri-p,)]} ~ 
s i =~ 

(31) 

(32) 

where 

(.) and (*) are the dot product and cross product of two vectors, respectively 

P,= OP, = ‘Pl + ‘Rl lPZ + . . . + ‘R,.l ‘-lP, is the position vector of the origin of Frame {s} 

measured and expressed with respect to the inertial frame, and 

z, is a unit vector along the generalized coordinates measured with respect to the inertial 

frame. 

4.2.2 Inertial Torque Due to Rotational Effect M, 

The rotational kinetic energy of wind turbine component i, with mass moment of 

inertia ~ about its center of mass expressed with respect to Frame {i}, is given by 
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(33) 

where ‘R, = (“R,)’. 

The total kinetic energy of the wind turbine due to the rotational effect can then be written 

as a summation of the individual components. That is, 

‘r=~$ ( ‘Ro~i)t Ii ( ‘RoOi) . 
1 

Substituting Equation 18 into Equation 34 and applying the Lagrangian operator to the 

resulting equation with respect to a generalized coordinates leads to 

Mr ‘~ { (iRoz~)’Ii(iRoQi”) 
s i =S 

( ){ + ‘Roz, ‘Ii $ ‘R. [q’j X(tii -oj)] 
} 

‘iRO @S*”l)t li(iR@i)} 3 ‘<s<i 

(34) 

(35) 

Notice that the first, second, and third terms in the above equation represent the inertial 

torques due to angular accelerations, centrifugal forces, and Coriolis forces of the rotating 

links, respectively. 

4.2.3 Inertial Torque Due to Gravitation M~ 

The total potential energy of a wind turbine can be expressed as 

n 

where g is the gravitational acceleration vector, e.g., [0 O 9.81 m/sec2]’. 

(36) 

Applying the Lagrange operation to the above equation with respect to the generalized 
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coordinates, leads to 

‘g, =h ‘i g“[ ‘s*(ri-ps)] . 
i =~ 

(37) 

Details of the derivation of Equation 37 are outside the scope of this report. 

4.3 External Loads and Torques 

4.3.lDirect Torques Applied to links 

A. Spring and Damping Torques 

As shown in the free-body diagram depicted in Figure 9, the torques exerted on links 

by a torsional spring and damper can be expressed as 

T,p, = -k, q,z, + k,+lq,+lz,+l (38) 
T~a = -b,q’,z, + b,+lq’,+lz,,l , 

x (39) 

where 

k, is the torsional spring constant of the spring at joints 

b, is the damping coefficient of the damper at joints. 

The first terms in Equations 38 and 39 are the spring and damping torques, 

respectively, due to the spring and damper connecting links s-1 ands. The second terms in 

Equations 38 and 39 are the spring and damping torques, respectively, due to the spring and 

damper connecting linkss and s+l. 

B. Actuator Torque (Controller torque) 

Externally applied loads or torques can be modeled as 

‘a.i=.f(q~q’)zi y (40) 

where j represents an external forcing function or a function of the states of the wind 
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turbine defined by users, e.g., a braking force can be a function of the shaft speed. It can 

represent a mechanical brake or the dynamics of an active control system. Efrepresents a 

brake force, an equal but opposite moment will be applied to the link where the brake is 

mounted. If~ is an actuator moment, the internally reacted actuator forces will be 

neglected, i.e., the reacted actuator forces 

C. Aerodynamic Forces and Moments 

are assumed to be absorbed by the structure. 

As shown in Figure 10, the resulting moment of the aerodynamic force and moment 

directly exerted on links at the rotation axis can be calculated as 

Tae =M,e + C,* xF, , 
s s (41) 

where Mae, and F, are the aerodynamic moment and force exerted on links, respectively, 

(calculated using an external aerodynamic subroutine). The aerodynamic moments and 

forces are assumed to be point moments and forces acting through the center of gravity of 

each link. 

4.3.2 Forces Transmitted From Upper Links to Lower Components 

External forces, like the aerodynamic force Fi, exerted on link i will be partially 

consumed by the link, by converting to kinetic energy through link rotation. The rest of 

the forces are transmitted to its lower neighbors. Let 

L. =F~ -(1 -pn)[F. -(F.on.)nn -(Fn”zn)zn] 

be the force transmitted from the uppermost link, n, to its lower neighbor n-1, 

where n, is a unit vector parallel to the projection of the vector C“. on the x-y plane of 

Frame {n}. That is 

n _ [c~-(c;oz.)z.] 
n I [c”+:”+] I 

(42) 

(43) 

and ~, is the joint coefficient of joint n. The joint is free if p.=0 and the joint is locked 

(e.g., mechanically locked) if p.=1. 
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In practice, some of the torque generated from external forces are consumed by 

friction in the joints. The frictional torque in a joint can be modeled as external torques 

discussed in Section 4.3. lB. For convenience, the joint coefficients can be used as an 

alternative way to include friction loss in the model. Instead of using zero for the joint 

as 

coefficient of a free joint, any value between zero and one can be used to model the friction 

loss at the joint. Nevertheless, one should be aware of the fact that joint coefficients are 

not friction coefficients. It is proposed here merely for mathematical convenience. 

Similar to Equation 42, let 

be the force transmitted from link n- 1 to its lower neighbor n-2, where $“.l is the unit 

vector parallel to the projected vector of P*n on the x-y plane in Frame {n-1}. That is 

@__ [p~-(p;zll-l)z.-~] 
n 1 I [P;-(p:”zn-l)zn-,ll “ 

(44) 

(45) 

By induction, the force transmitted to links- 1 from links can be written as 

L,=(F, +(,+ I)-(l -P,){(F, +~,,l) -(F,”n,)n, -(L,+, o@,)$, -[(F, +t,+l)sz,]z,} ~ (46) 

In a typical wind turbine model, aerodynamic forces are calculated and applied to the 

blades. Equation (46) can be used to calculate the aerodynamic forces transmitted from 

the blades to the rest of the turbine components. 

4.3.3 Moments Transmitted From Upper Links to Lower Component and the 

Effective Torques 

Like aerodynamic forces, moments exerted on link i will be partially converted to 

kinetic energy by link i rotation. The rest of the moment is transmitted to its lower 

neighbor i-1. Let T. be the total direct moment exerted on the last link n, i.e., the outermost 

link n, excluding the externally applied torque. That is, 
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T.= T,pn + T~O + Tae . 
n n (47) 

The effective torque that causes the link to rotate about its axis is 

zn=Tn”z~+T acn y (48) 

. 

where z. is a unit vector along the direction of the joint axis n. The portion of the moment 

transmitted to its lower neighbor n- 1 is 

“.= Tn-(l-wJ[(Tn”zn)znl o 

The total moment, excluding the actuator moment, exerted on link n- 1 is 

T ._l =T’n +P: X(n +T,p”-l +T~a +Tae ., . 
n-1 n 

The effective torque at joint axis n-1 is 

T n-1 =Tn., “Zn_, + TaC , 
n- 

and 

T, 

n-l ‘Tn-l ‘(l-wn-l)[Tn-l-zn-l)zn-ll o 

(49) 

(50) 

(51) 

(52) 

By induction, the total moment exerted on links and its effective torque can be derived as 

T, =T’,+l +P5:IXC5+1 +T +T~Q +Ta~ 
SPS (53) 

‘S= T~-Z5+T s s (54) 

T’, =Ts-(1-/.q) [ ( T;zs)zs] “ (55) 

Equation (53) calculated the aerodynamic torques transmitted from the blades to the rest of 

the turbine components. 
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4.4 EOM Builder and a Recursive Algorithm to Calculate the Effective Torque 

The equations derived in the above sections are totally generic to the turbine 

structures. The inertial components of the EOM, i.e., the left-hand side of Equation 26, of 

a wind turbine can be derived symbolically using Equations 25, 32, 35, and 37. The 

effective torque applied to each rotation axis will be systematically calculated in real time 

using a recursive algorithm as stated below. 

(1) Call an external aerodynamic subroutine (e.g., the Utah Aerodyn subroutine 

[Hansen 1995]) to calculate the aerodynamic forces Fi and moments Mae, directly 

exerted on each of the blade segments, i= 1,2, -., n. Notice that the aerodynamic 

forces exerted on the nacelle and tower can also be included in the calculations. 

(2) Calculate ~i, for i = n, n-1, n-2, . . . . 2, in reversed order using equations 43,45 and 

46. In the case where an aileron device is attached to the end of the blade, Cn+l = 

‘aileron o g. That is, ~n+l equals the weight of the aileron. Otherwise, Cn+l = O. 

(3) Calculate Ti, ~i, T’i> i=n, n-1, n-2,..., 1, in reverse order using Equations 53 through 

55. Notice that T’D+l=O. 

The above algorithms were used to derive the EOMS of two simple wind turbines in the 

following chapter. 

34 



5.0 Phase I Test Cases 

One of the most important tasks in developing a wind turbine modeler is to verify its 

theoretical formulations. The formulations discussed in chapters 3 and 4 are verified in 

two phases. The first phase focuses on the verifications of “text book” cases, i.e., simple 

wind turbines whose EOMS can be found in the text books. The second phase checks the 

EOMS against commercial wind turbine models and experimental data. This chapter 

discusses two test cases as part of the Phase I verification test cases. 

5.1 A Single Rotating Blade 

The first test case is a single rotating blade as depicted in Figure 11. The single-blade 

wind turbine is assumed to be a rigid blade mounted on a rigid tower with a fixed yaw 

angle. The rotor has zero tilt angle, zero rotor offset, and no teeter axis, i.e., 

a= b=c=d=e=f=Oand5g =0 . (56) 

Since there is no yaw motion, the rotor length e and the overhang distance f can both 

be set to zero without changing the dynamics of the turbine. The blade is assumed to be a 

rigid blade but flexible at the root point about the in-plane bending axis relative to the hub. 

This flexible blade-root configuration can be easily accommodated by locking the pitch and 

coning axes of the generic wind turbine model as shown in Figure 6. This unrealistic 

turbine configuration was chosen as the first test case because it resembles a double 

pendulum problem whose EOMS can be found in many books. This turbine model can be 

derived from the base model described in Chapter 2 by locking all rotation axes except for 

the azimuth and the in-plane bending axes, see Figure 6. That is, 

q~=o, q~=(l>q4=el>cj5 =o, q6=o, q7=o, qg=e~ , (57) 

where 6 ~ and 6Z are two independent variables representing the azimuth angle and the in- 

plane bending angle, respectively. The mass of the hub and rotor are denoted by ml and 

mz. The hub radius is Li and the blade length is ~. The shapes of the hub and the blade 

are both assumed to be slender rods. Aerodynamic forces and moment are symbolical y 

represented by the vectors Faeg=[fx2 fyz fz2]1 and Mae8=[txz ty2 tzz]t. The actual values of 

the aerodynamic forces and moments are calculated from an external subroutine in real 

time. They are attached to the blade at its center of gravity, i.e., ~/2 ft measured from the 

blade root. The azimuth axis is assumed to be frictionless, and the in-plane bending axis is 
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restrained by a torsional spring and damper simulating the stiffness and darnping at the 

blade root. 

Appendix A includes a Matlab M file that was implemented to generate the EOMS 

specifically for this example. The EOMS generated by this problem are included in 

Appendix B. The EOMS were verified and agree with the EOMS of a double pendulum 

discussed in [Shabana 1994, Murray et al. 1994]. EOM 1 in Appendix B represents the 

EOM about the azimuth axis, and EOM 2 is the EOM about the in-pane bending axis. 

5.2 A Down-Wind, Free-Yaw, Two-Bladed, Teetered-Rotor Wind Turbine 

The second test case is a free-yaw, two-bladed, teetered-rotor wind turbine as shown in 

Figure 12. The blades and the tower are both assumed to be rigid. The turbine is stall 

regulated, and has no flexibility at the blade roots. It has zero delta-3 angle and zero 

overhang distance. Each blade has 7 degrees of precone angle, down wind. From the base 

model, this wind turbine configuration can be obtained by setting the joint variables as 

follows, 

q2 = qz~ q3 ‘o, q4=q4, q5=q5>q6=0$q7 =-7°, q8=o , (57) 

where q2, q4, q5 denote the yaw angles, azimuth angles, and teeter angles, respectively. 

The rotor has zero offset and uptilt angle. The shaft length is assumed to be 6.97 ft. It 

has no overhang, and the hub radius is 3 ft. Since the blades are preconed, the center of 

gravity of the rotor assembly is assumed to be L~ ft downwind along the X5 axis, see Figure 

6. The aerodynamic forces and moments are attached to the points ~ ft along the span 

axis of each blade measured from the blade root. A teeter spring and a damper are attached 

to the teeter pin to restrain the teeter motion. K5 and b~ are used to denote the spring and 

damping coefficients, respectively. 

Appendix C contains the Matlab M file that was implemented to generate the EOMS 

for this test case. The EOMS generated by this program are included in Appendix D. EOM 

1 in Appendix D represents the yaw equation. EOM 2 is the azimuth equation, and EOM 3 

is the teeter equation. The EOMS do not agree with the EOMS of a similar turbine model 

discussed in the NREL report [Hansen 1992] in a term by term comparison. Nevertheless, 

the disagreements in EOMS do not necessarily imply that the EOMS in Appendix D are 

incorrect. The turbine model discussed in Hansen’s report uses different coordinate 
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systems and some simplification assumptions. For example, the generator speed in 

Hansen’s model is a constant and the center of gravity of the teetered-rotor is always 

aligned with the azimuth axis. The EOMS in Appendix D do not use these assumptions. A 

possible way to verify the EOMS is to run time simulation on measured wind data and 

compare the simulation results against measured field data. 

Although the accuracy of the EOMS in Appendix D is yet to be verified, the two test 

cases have demonstrated the potential of the EOM builder as proposed in this report. Using 

the systematic procedures, a complicated wind turbine model can be easily generated. In 

addition, a reliable free yaw wind turbine model can be easily derived from a verified fixed 

yaw wind turbine model by simply changing the yaw joint coefficient from one to zero. 

The behavior of the free yaw machine can then be studied analytically without any 

hardware construction cost. A summary of the problems encountered and lessons learned 

from implementations of these two test cases are discussed in the following chapter. 
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6.0 Summary and Conclusions 

Not only can a properly designed wind turbine control system produce higher power 

output, but it also can reduce structural loads. To accomplish this, a reasonable dynamics 

model must be included in the control studies. This project proposes a modular wind 

turbine modeler. The modeler automatically constructs analytical wind turbine models 

from user input files that describe the turbine configurations. A basic turbine model 

consists of modules defining the tower, rotor, drive train, generator, power electronics, and 

blade dynamics. Chapter 2 of this report discusses the dynamics of the power train 

components. A mathematical formulation that attempts to provide a systematic way to 

derive the EOMS describing the dynamics of the rotor assembly is presented in Chapters 3 

and 4. Two test cases that served as preliminary checks for the theoretical formulation are 

discussed in Chapter 5. The formulation generates explicit nonlinear differential 

equations. The closed form EOMS can be extremely informative when studying wind 

turbine performance at unusual operating conditions. Individual terms can be isolated from 

the equations to gain insight on the turbine’s dynamic behavior. This mathematical 

formulation has been tested to derive the EOMS of a two-bladed, free-yaw wind turbine; 

test case 1.2 discussed in Chapter 5, which is modeled in the Yawdyn code for future 

verification. Further verifications will also be conducted for industrial applications. With 

the EOMS linearized at an operating point, control designs can be studied using commercial 

control software like the Matlab control toolbox. 

There are a few issues that need to be addressed in future studies. The first relates to 

the software implementation. The Matlab M files listed in Appendix A and C were initially 

implemented for Matlab Symbolic Toolbox Version 1.2. The Matlab Symbolic Toolbox 

was chosen because the EOMS generated can be easily integrated into other Matlab 

toolboxes for control studies. However, it was found that the 1.2 version was totally 

inadequate to handle systems of complex dynamics. After a lengthy negotiation with 

Mathworks, manufacturer of Matlab, a beta version of Symbolic Toolbox 2.0 was obtained 

in May 1997. The production unit was released in late August. The M files were then 

rewritten for the new version of the Symbolic Toolbox because the new version is 

incompatible with the early ones. After taking all that trouble, the results were still 

discouraging. The Symbolic Toolbox was installed on two Pentiums (75 MHz and 

166MHz, respectively, 40Mbytes of memory in each PC). Test case 1.1, see Chapter 5, 

will run on either one of the computers and generates correct results within a few seconds. 

Both machines failed to run test case 1.2. After dividing the M file of test case 1.2 into 

three sections and executing each section sequentially, results can be generated on the 
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166MHz Pentium inabout 10minutes butnoton the75MHz Pentium. Inadditionto 

hardware dependency, the Symbolic Toolbox does not provide functions to collect terms 

with common factors. This functional deficiency might result in very large EOMS that are 

difficult to simplify manually by users. This problem can be illustrated by the EOMS of 

test case 1.2 listed in Appendix D. A better symbolic math package should be investigated. 

The second issue concerns the Iinearlization procedure. If the resulting nonlinear 

EOMS are linearized at the “zero” nominal point, i.e., all nominal values of the states equal 

to zero, then the linearization procedure is a straightforward process. However, if 

linearization about a non-zero nominal point is desired, say, at a certain wind speed, the 

nominal values of the other states need to be determined. This implies that a numerical 

procedure must be integrated into the turbine modeler to solve for the state values at the 

nominal operating points, otherwise they have to be given by the users. 

The last issue, but not the least one, is the need for the integration of ordinary 

differential equations, which describe rigid-body motion such as the rotor and power train 

dynamics, and partial differential equations, which describe continuously flexible 

components, such as the tower and blades. Models of continuous flexible components 

were not discussed in this report. A good reference for this subject is the book by Junkins 

[Junkins and Kim 1993]. It is expected that the Matlab Simulink software can integrate 

these two types of models in one system and linearize the system at a nominal point 

specified by the user. However, until it is done, many intricate problems are anticipated. 
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Appendix A. Matlab M File for Test Case 1.1 (phase 1, case 1) 

% Test Case 1.1- A single-blade rigid rotor with a free rotational 
% degree of freedom about the azimuth axis, i.e., 
% mu4 = k4 = b4 = O, and a constrained degree of 
% freedom about the in-plane bending axis, i.e., 
% k8 and b8 are non zeros. 
% 
70 User’s input 

% define basic kinematic parameters, i.e., the D-H pararnters 

% L1, L2, thetal, and theta2 are used as the symbolic variables 
% reprenting the hub length, blade length, azimuth angle, 
% and in-plane bending angle, respectively. 

syms L1 L2 thetal theta2; 
q2 = O; q3 = O; q4 = thetal; q5 = O; q6 = O; q7 = O; q8 = theta2; 
a= O; b= O;c=O; d= O;e=O; f=O; 
g=Ll; 
delta3 = O; 

?10 define the center of gravity (cg) of each mass w.r.t. 
% its local frame 

C44p = [L1/2;O;O]; 
c88p = [O;-L2/2;O] ; 

% define the mass of the hub and the rotor 

syms ml m2; 

% define the inertial of each link w.r.t. it local frame 
144 =[0, o, o; . . . 

0, ml*LlA2/12, o; . . . 
0, 0, ml*LlA2/12]; 

188 =[m2*L2A2/12, O, o; . . . 
0, 0, o; . . . 
0, 0, m2*L2A2/12]; 

% define the aerodynamic forces and moments w.r.t. 
% the inertial frame 

syms fx2 fy2 fz2 tx2 ty2 tz2; 
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Fae4 = [0;0;0]; 

Mae4 = [0;0;0]; 

Fae8 = [fx2;fy2;fz2]; 

Mae8 = [tx2;ty2;tz2]; 

% define actuation torques 

Tac4 = O: 

Tac8 = O; 

% define the spring and damping coefficients for each axis 

SyITIS k2 b2; 
lc4=O; b4=O; 
k8 = k2; b8 = b2; 

% define the viscous friction coefficients of the joints 

mu4 = O; mu8 = O; 

% build basic D-H matroces 

T12 = dhmat(0,0,q2,b); 
T23 = dhmat(pi/2,a,-pi/2+q3, -c); 
T34 = dhmat(-pi/2,d,-pi/2-delta3+q4,e+f); 
T45 = dhmat(pi/2,0,-pi/2+q5,0); 
T56 = dhmat(pi/2-delta3,f,pi+q6,-g); 
T67 = dhmat(-pi/2,0,pi/2+q7,0); 
T78 = dhmat(-pi/2,0,pi/2+q8,0); 

% build combined D-H matrices 

T2=T12; 
T2 = simple; % simplify T2 if possible 
T24 = T23 * T34; 

T24 = simple(T24); 
T4 = T2 * T24; 
T4 = simple; 
T46 = T45 * T56; 
T46 = simple(T46); 
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T68 = T67 * T78; 
T68 = simple(T68); 
T48 = T46 * T68; 
T48 = simple(T48); 
T8 = T4 * T48; 
T8 = simple; 

% change variable indices from 4,8 to 1,2 
T1 =T4; 
T2 = T8; 
T12=T48; 

111 = 144; 
122 = 188; 

Fae 1 = Fae4; Mae 1 = Mae4; 
Fae2 = Fae8; Mae2 = Mae8; 

Tac 1 = Tac4; Tac2 = Tac8; 

ql = q4; q2 = q8; 
kl = k4; bl =b4; 
k2 = k8; b2 = b8; 

cllp=c44p; 
c22p = c88p; 

‘ZO extracts rotation matrices, z-vectors, and position vectors 
% of the origins 

R1 = hom2rot(Tl); 
R12 = hom2rot(T12); 
R2 = hom2rot(T2); 

Z1 = wtextc(Tl,3); 
Z2 = wtextc(T2,3); 

Plp = wtextc(Tl ,4); 
P12p = wtextc(T12,4); 
P2p=Rl * P12p; 

P1 =Plp; 
P2 = wtextc(T2,4); 
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% calculate the position vector of the cg w.r.t. the 
YO inertial frame Equation 5 

C1p = R1 * C44P; 
C2p = R2 * c88p; 

rl =Plp + Clp; %rl=pl+clp 
r2=Plp+P2p+C2p; %r2=p2+c2p 

90 define the angular velocities and accelerations of each joint 
% w.r.t. the initial frame, i.e., observed in the local frame 
% but expressed w.r.t. the initial frame 

q lp = sym(’qlp~ * z 1; % angular velocity at the azimuth axis 
q2p = sym(’q2p’) * z2; % angular velocity at the in-plane bending axis 
qlpp = sym(’qlpp’) * Z1; % angular acceleration at the azimuth axis 
q2pp = sym(’q2pp’) * z2; % angular acceleration at the in-plane bending axis 

% compute the angular velocity of each link w.r.t. the inertial 
9Z0 frame using Equation 4, i.e., observed and expressed w.r.t. 
% the inertial frame 

Qlp=qlp; 
Q2p=qlp+q2p; 

% compute the linear accelerations at the cg of each link 
% using Equation 5, i.e., observed and expressed w.r.t. the 
% inertial frame 

Qlpp=qlpp; 
Q2pp = qlpp + q2pp; 

t4 = xproduct(Q lpp,C lp); 
t6 = xproduct(Qlp, xproduct(Qlp,Clp)); 
al = t4 + t6; 
al = simple; 

t 1 = xproduct(Qlpp,P2p); 
t3 = xproduct(Qlp, xproduct(Qlp,P2p)); 
t4 = xproduct(Q2pp,C2p); 
t5 = xproduct( xproduct(Qlp,q2p), C2p); 
t6 = xproduct( Q2p, xproduct (Q2p, C2p)); 
a2=tl+t3+t4+t5+t6; 
a2 = simple; 
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% compute the inertial due to the translation motion applied ~ 
% to joint 1 using Eqation 16, i.e., s = 1 

tl = (ml*al)’ * xproduct(zl , (rl - Pi)); 
t2 = (m2*a2)’ * xproduct(zl , (r2 - Pi)); 
Mtl =tl +t2; 
Mt 1 = simple(Mt 1 ); 

% compute the inertial due to the translation motion applied 
% to joint 2, i.e., s = 2 

Mt2 = (m2*a2)’ * xproduct(z2, (r2 - P2)); 
Mt2 = simple(Mt2); 

% compute the inertial due to the rotation motion applied 
% to joint 1 using Eqation 19, i.e. s = 1 

% i=l 
tl = (RI’* z1)’* Ill.* (R1’* Qlpp); 
t3 = (R1’* xproduct(zl,Qlp))’ * Ill * (R1’* Qlp); 
Mrl = tl +t3; 
% i=2 
tl = (R2’* z1)’* 122 * (R2’* Q2pp); 
t2 = (R2’ * z1)’ * 122 * (R2’ * xproduct(qlp,Q2p-Qlp)); 
t3 = (R2’ * xproduct(zl ,Q2p))’ * 122 * (R2’ * Q2p); 
Mrl =Mrl +tl +t2 +t3; 
Mrl = simple(Mrl); 

% compute the inertial due to the rotation motion applied 
% to joint 2, i.e., s = 2 

% i=2 
tl = (R2’ * z2)’ * 122 * (R2’ * Q2pp); 
t2 = (R2’ * z2)’ * 122 * (R2’ * xproduct(qlp,Q2p-Qlp)); 
t3 = (R2’ * xproduct(z2,Q2p))’ * 122 *(R2’ * Q2p); 
Mr2=tl+t2+t3; 
Mr2 = simple(Mr2); 

% compute the inertial due to the gravitation applied 
% to joint 1 using Eqation 21, i.e., s = 1 

% i=l 
syms g; % define g as the gravitation constant, a scalar 
% whose direction is along the negative y direction 
% in this example 

46 



tl = ml * [0; O; -g]’ * xproduct(zl ,(rl-Pi)); 
% i=2 
t2 = m2 * [0; O; -g]’ * xproduct(z 1,(r2-Pl )); 
Mgl =tl +t2; 
Mgl = simple(Mgl); 

% compute the inertial due to the gravitation applied 
% to joint 2 using Eqation 21, i.e., s = 2 

%i=2; 
Mg2 = m2 * [0; O; -g]’ * xproduct(z2,(r2-P2)); 
Mg2 = simple(Mg2); 

% compute the spring and darnper torque applied to each joint 
% define the spring constants and damping coefficients 
% of each joints using Equation 23 

Tspl = -kl * thetal * Z1 + k2 * theta2 * z2; 
Tsp2 = -k2 * theta2 * z2; 
Tdal = -bl * qlp+b2 * q2p; 
Tda2 = -b2 * q2p; 

% compute the actuator torques applied to each joint 
% The actuator torques equal to zero in this example 

% compute the projection vectors on the x-y plane 

[numl,denl,nl] = projpp(Clp, z1); 

[num2,den2,n2] = projpp(C2p , z2); 

[num3,den3,phil] = projpp(P2p, z1); 

% compute the direct aerodynamic torque applied to each link 

Tae2 = Mae2 + xproduct(C2p, Fae2); 

Tael = Mael + xproduct(Clp, Fael); 

% define the viscous friction coefficients of the joints 

mul =0; 

mu2 = O; 
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% compute the total external torque applied to the 

% outmost link, i.e., s = 2 

T2 = Tsp2 + Tda2 + Tae2; 

% compute the effective torque at the joint 

tau2 = T2’ * 22 + Tac2; 

% compute the force transmitted from links tos- 1 

% s =2, i.e., force applied to link 1 by link 2 

zeta2 = Fae2 - (1 -mu2)*(Fae2- (Fae2’%2)*n2 - (Fae2wz2)*z2); 

% compute the torque transmitted from links tos- 1 

T2p = T2 - (1-mu2)*((T2’ * 22)*22); 

% compute the total external torque applied to the 

% inner links, i.e., s < n 

T 1 = T2p + xproduct(P2p,zeta2) + Tsp 1 + Tdal + Tae 1; 

f% compute the effective torque at the joint 

taul =T1’*z1 +Tacl; 

% construct the EOMS using Equaiton 13 

LEOM1 = Mtl + Mrl + Mgl; 
LEOM1 = simple (LEOM1); 
REOM1 = simple (taul); 

LEOM2 = Mt2 + Mr2 + Mg2; 
LEOM2 = simple (LEOM2); 
REOM2 = simple (tau2); 

% store the EOMS in a file 

delete(’oneblade. eom ‘); 

diary oneblade.eom; 
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display(lEOMs of Example 1‘) 
display(lnertial torques (LHS) of EOM 1 ~; 
pretty(LEOM 1 ) 
display(’Extemal torques (RHS) of EOM 1 ‘); 
pretty(REOM 1 ) 
display(tiertial torques (LHS) of EOM 2’); 
pretty(LEOM2) 
display(’Extemal torques (RHS) of EOM 2’); 

pretty(REOM2) 
diary offi 
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Appendix B. EOMS for Test Case 1.1 

Inertial torques (LHS) of EOM 1 

2 2 2 2 

m2 qlpp Ll + 1/3 ml L1 qlpp - 1/3 m2L2 q2pp + 1/3 m2 L2 qlpp 

2 
+ 1/2 m2 L2 q2p L1 sin(theta2) - m2 L2 qlp q2p L1 sin(theta2) 

- 1/2 m2 L2 q2pp L1 cos(theta2) + m2 qlpp L1 L2 cos(theta2) 

+ 1/2 g ml cos(thetal) L1 + g m2 cos(thetal) L1 

+ 1/2 g m2 cos(thetal - theta2) L2 

External torques (RHS) of EOM 1 

- 1/2 L1 fy2 sin(thetal -2 theta2) + 1/2 sin(thetal) L1 fy2 

+ 1/2 L1 fz2 cos(thetal -2 theta2) - 1/2 cos(thetal ) L1 fz2 - k2 theta2 

- b2 q2p 

Inertial torques (LHS) of EOM 2 
2 

- 1/6 m2 L2 (3 qlpp L1 cos(theta2) -3 qlp L1 sin(thetti) + 2 L2 qlpp 

-2 L2 q2pp + 3 g cos(thetal - theta2)) 

External torques (RHS) of EOM 2 

-k2 theta2 - b2 q2p - tx2 - 1/2 sin(thetal - thetti) L2 fy2 

+ 1/2 cos(thetal - theta2) L2 fz2 
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Appendix C. Matlab M File for Test Case 1.2 (phase 1, case 2) 

% Test Case 1.2- A Simplified ERS-80 Rotor Model 

% User’s input 

% q2, q4, and q5 are used as the symbolic variables 
% reprenting the yaw, azimuth, and teeter angles, respectively. 

syms q2 q4 q5; 
q3=O; q6=O; q6p=O; 
q7=- 7 * pi/ 360; % 7 degrees precone downwind 
a= O; b= O;c=O; d=O; 

e = 6.97; % ft 
f=o; 
g= 3; %ft 
delta3 = O; 

% define the center of gravity (cg) of each mass w.r.t. 
% its local frame 

SyIllS L5 L7; 

c22p = [0;0;0] ; 
c44p = [0;0;0]; 
c55p = [-L5 ;0;0]; % L5 ft downwind 
c77p = [L7;O;O]; % L7 ft outward along the span axis 

% define the mass of the nacelle, drive train and the rotor, respectively 

syms m2 m5; 
m4 = O; 

% define the inertial of each link w.r.t. it local frame 
syms 12xx 12yy 12zz; 
syms 15XX 15yy 15zz; 

122 =[12XX, o, o; . . . 
0, 12yy, o; . . . 
0, 0, 12zz]; 

144 =[0, o, o; . . . 
0, 0, o; . . . 

0, 0, o]; 
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155 =[~XX, o, o; . . . 
0, 15yy, o; . . . 
0, 0, 15zz]; 

% define the aerodynamic forces and moments w.r.t. 
% the inertial frame 

syms fx7 fy7 fz7 tx7 ty7 tz7; 
syms fx7p fy7p fz7p tx7p ty7p tz7p; 

Fae2 = [0;0;0]; 

Mae2 = [0;0;0]; 

Fae4 = [0;0;0]; 

Mae4 = [0;0;0]; 

Fae5 = [0;0;0]; 

Mae5 = [0;0;0]; 

Fae7 = [fx7;fy7;fz7]; 

Mae7 = [tx7;ty7;tz7]; 

Fae7p = [fx7p;fy7p;fz7p]; 

Mae7p = [tx7p;ty7p;tz7p]; 

% define actuation torques 

Tac2 = O; 

Tac4 = sym(l’p~; $ZO Torque transmitted from the power train 

Tac5 = O; 

% define the spring and darnping coefficients for each axis 

k2=O; b2=O; 
k4=O; b4=O; 
syms k5 b5; 
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% define the viscous friction coefficients of the joints 

mul =O; mu2=O; mu3 =0; 

% define the angular velocities and accelerations of each joint 
% For constant speed operation q4p = a constant 
% q4pp = o; 

syms q2p q4p q5p q2pp q4pp q5pp 

% build basic D-H matroces 

T12 = dhmat(0,0,q2,b); 
T23 = dhmat(pi/2,a,-pi/2+q3,-c); 
T34 = dhmat(-pi/2,d,-pi/2-delta3+q4,e+f); 
T45 = dhmat(pi/2,0,-pi/2+q5,0); 
T56 = dhmat(pi/2-delta3, f,pi+q6,-g); 
T67 = dhmat(-pi/2,0,pi/2+q7,0); 
T56p = dhmat(-pi/2-delta3,f,pi+q6,-g); 
T6p7p = dhmat(-pi/2,0,pi/2+q7,0); 

Yo build combined D-H matrices 

T2=T12; 
T2 = simple; % simplify T2 if possible 
T24 = T23 * T34; 
T24 = simple(T24); 
T4 = T2 * T24; 
T4 = simple; 
T5 = T4 * T45; 
T5 = simple; 
T57 = T56 * T67; 
T57 = simple(T57); 
T7 = T5 * T57; 
T7= simple; 
T57p = T56p * T6p7p; 
T57p = simple(T57p); 
T7p = T5 * T57p; 
T7p = simple(T7p); 

% change variable indices from 2,4,5,7 to 1,2,3,4 
T1 =T2; 
T12=T24; 
T2 = T4; 
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T23 = T45; 
T3 = T5; 
T34 = T57; 
T4 = T7; 
T34p = T57p; 
T4p = T7p; 

ml = m2; m2 = m4; m3 = m5; 
111 = 122; 122= 144; 133= 155; 
Fael = Fae2; Mae 1 = Mae2; 
Fae2 = Fae4; Mae2 = Mae4; 
Fae3 = Fae5; Mae3 = Mae5; 
Fae4 = Fae7; Mae4 = Mae7; 
Fae4p = Fae7p; Mae4p = Mae7p; 
Tac 1 = Tac2; Tac2 = Tac4; Tac3 = Tac5; 

ql =q2; q2=q4; q3 =q5; 
kl =k2; bl =b2; 
k2 = k4; b2 = b4; 
k3 = k5; b3 = b5; 

% extracts rotation matrices, z-vectors, and position vectors 
% of the origins 

R1 = hom2rot(Tl); 
R12 = hom2rot(T12); 
R2 = hom2rot(T2); 
R23 = hom2rot(T23); 
R3 = hom2rot(T3); 
R34 = hom2rot(T34); 
R34p = hom2rot(T34p); 
R4 = hom2rot(T4); 
R4p = hom2rot(T4p); 

Z1 = wtextc(Tl ,3); 
Z2 = wtextc(T2,3); 

Z3 = wtextc(T3,3); 
Z4 = wtextc(T4,3); 
z4p = wtextc(T4p,3); 

Plp = wtextc(Tl ,4); 
P12p = wtextc(T12,4); 
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P2p =Rl * P12p; 
P23p = wtextc(T23,4); 
P3p = R2 * P23p; 
P34p = wtextc(T34,4); 
P4p = R3 * P34p; 
P34pp = wtextc(T34p,4); 
P4pp = R3 * P34pp; 

P1 = Pip; 
P2 = wtextc(T2,4); 
P3 = wtextc(T3,4); 
P4 = wtextc(T4,4); 
P4p = wtextc(T4p,4); 

% calculate the position vector of the cg w.r.t. the 
Yo inertial frame Equation 5 

Clp = R1 * c22p; 
C2p = R2 * Cup; 
C3p = R3 * c55p; 
C4p = R4 * c77p; 
C4pp = R4p * c77p; 

rl = Plp +Clp; %rl=pl+clp 
r2 = Plp + P2p + C2p; %r2=p2+c2p 
r3 = Plp + P2p + P3p + C3p; % r3 = p3 + c3p 
% aerodynamic forces attach on Blade 1 
r4 = Plp + P2p + P3p + P4p + C4p; 
% aerodynamic forces attach on Blade 2 
r4p = Plp + P2p + P3p + P4pp + C4pp; 

% define the angular velocities and accelerations of each joint 
70 w .r.t. the initial frame, i.e., observed in the local frame 
% but expressed w.r.t. the initial frame 

q lp = q2p * z 1; % angular velocity at the yaw axis 
q2p = q4p * z2; % angular velocity at the azimuth axis 
q3p = q5p * z3; ‘ZO angular velocity at the teeter axis 
qlpp = q2pp* z 1; ?ZO angular acceleration at the yaw axis 
q2pp = q4pp* z2; YO angular acceleration at the azimuth axis 
q3pp = q5pp* z3; % angular acceleration at the teeter axis 
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% compute the angular velocity of each link w.r.t. the inertial 
% frame using Equation 4, i.e., observed and expressed w.r.t. 
% the inertial frame 

Qlp=qlp; 
Q2p =qlp +q2p; 
Q3p = qlp + q2p + q3p; 

% compute the linear accelerations at the cg of each link 
% using Equation 7, i.e., observed and expressed w.r.t. the 
% inertial frame 

Qlpp=qlpp; 
Q2pp = qlpp + q2pp; 
Q3pp = qlpp + q2pp + q3pp; 

%i=l 
t4 = xproduct(Qlpp,C lp); 
t6 = xproduct(Qlp, xproduct(Qlp,Clp)); 
al = t4 + t6; 
al = simple(al ); 
%i=2 
t 1 = xproduct(Qlpp,P2p); 
t3 = xproduct(Q lp, xproduct(Qlp,P2p)); 
t4 = xproduct(Q2pp,C2p); 
t5 = xproduct(xproduct(Qlp,q2p),C2p); 
t6 = xproduct(Q2p, xproduct (Q2p, C2p)); 
a2=tl+t3+t4+t5+t6; 
ti = simple; 
%i=3 
t 1 = xproduct(Qlpp,P2p) + xproduct(Q2pp,P3 p); 
t2 = xproduct(xproduct(Q lp,q2p),P3p); 
t3 = xproduct(Qlp, xproduct(Qlp,P2p)) . . . 

+ xproduct(Q2p, xproduct(Q2p,P3p)); 
t4 = xproduct(Q3pp,C3p); 
t5 = xproduct(xproduct(Q lp,q2p)+xproduct(Q2p ,q3p),C3p); 
t6 = xproduct(Q3p, xproduct (Q3p, C3p)); 
a3=tl+t2+ t3+t4+t5+t6; 
a3 = simple; 

% compute the inertial due to the translation motion applied 
% to the yaw axis using Eqation 16, i.e., s = 1 

tl = (ml*al)’ * xproduct(zl , (rl - Pi)); 
t2 = (m2*a2)’ * xproduct(zl , (r2 - Pi)); 
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t3 = (m3*a3)’ * xproduct(zl , (r3 - Pi)); 
Mtl = tl + t2 + t3; 
Mtl = simple(Mt 1); 

% compute the inertial due to the translation motion applied 
% to the azimuth axis, i.e., s = 2 

t2 = (m2*a2)’ * xproduct(z2, (r2 - P2)); 
t3 = (m3*a3)’ * xproduct(z2 , (r3 - P2)); 
Mt2=t2+t3; 
Mt2 = simple(Mt2); 

% compute the inertial due to the translation motion applied 
%-o to the teeter axis, i.e., s = 3 

t3 = (m3*a3)’ * xproduct(z3 , (r3 - P3)); 
Mt3 = t3; 
Mt3 = simple(Mt3); 

% compute the inertial due to the rotation motion applied 
% to the yaw axis using Eqation 19, i.e. s = 1 

% i=l 
tl =(R1’* z1)’* Ill * (R1’* Qlpp); 
t3 = (R1’ * xproduct(zl,Qlp))’ * 111 * (R1’ * Qlp); 

Mrl =tl +t3; 
% i=2 
tl = (R2’ * Zl)’ * 122 * (R2’ * Q2pp); 
t2 a (R2’ * z 1)’ * 122 * (R2’ * xproduct(qlp,Q2p-Q lp)); 

t3 = (R2’ * xproduct(zl,Q2p))’ * 122 * (R2’ * Q2p); 

Mrl = Mrl +tl +t2 +t3; 
%i=3 
tl = (R3’* z1)’* 133 * (R3’* Q3pp); 
t2 = (R3’ * z1)’ * 133 * (R3’ * (xproduct(qlp,Q3p-Qlp) . . . 

+xproduct(q2p,Q3 p-Q2p))); 
t3 = (R3’ * xproduct(zl,Q3p))’ * 133 * (R3’ * Q3p); 

Mrl =Mrl +tl +t2 +t3; 

Mrl = simple(Mrl); 

% compute the inertial due to the rotation motion applied 
‘Yo to the azimuth axis, i.e., s = 2 
% i=2 

tl = (R2’ * z2)’ * 122 * (R2’ * Q2pp); 
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t2 = (R2’ * z2)’ * 122 * (R2’ * xproduct(qlp,Q2p-Qlp)); ~ 
t3 = (R2’ * xproduct(z2,Q2p))’ * 122 * (R2’ * Q2p); 
Mr2 =tl +t2 +t3; 

% i=3 
tl = (R3’ * z2)’ * 133 * (R3’* Q3pp); 
t2 = (R3’ * z2)’ * 133 * (R3’ * (xproduct(q lp,Q3p-Qlp)+ . . . 

xproduct(q2p,Q3p-Q2p) )); 
t3 = (R3’ * xproduct(z2,Q3p))’ * 133 * (R3’ * Q3p); 
Mr2=Mr2+tl +t2+t3; 
Mr2 = simple(Mr2); 

% compute the inertial due to the rotation motion applied 
% to the teeter axis, i.e., s = 3 

% i=3 
tl = (R3’ * z3)’ * 133 * (R3’ * Q3pp); 
t2 = (R3’ * z3)’ * 133 * (R3’ * (xproduct(qlp,Q3 p-Qlp) + . . . 

xproduct(q2p,Q3 p-Q2p) )); 
t3 = (R3’ * xproduct(z3,Q3p))’ * 133 * (R3’ * Q3p); 
Mr3=tl+t2+t3; 
Mr3 = simple(Mr3); 

% compute the inertial due to the gravitation applied 
% to the yaw axis using Eqation 21, i.e., s = 1 

g = [0; O; sym(’-g’)]; 
70 define g as the gravitation vector, whose direction is 
70 along the negative z direction in this example 

% i=l 
tl = ml * g’* xproduct(zl,(rl-Pi)); 
% i=2 
t2 = m2 *g’* xproduct(zl,(r2-Pi)); 
% i=3 
t3 = m3 * g’* xproduct(zl ,(r3-Pi)); 
Mgl =tl +t2 +t3; 
Mgl = simple(Mgl); 

% compute the inertial due to the gravitation applied 
YO to the azimuth axis using Eqation 21, i.e., s = 2 

‘%i=2; 
t2 = m2 * g’* xproduct(z2,(r2-P2)); 
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%i=3; 
t3 = m3 * g’* xproduct(z2,(r3 -P2)); 
Mg2 =t2 +t3; 
Mg2 = simple(Mg2); 

% compute the inertial due to the gravitation applied 
% to the teeter axis using Eqation 21, i.e., s = 3 

%i=3; 
Mg3 = m3 *g’* xproduct(z3,(r3-P3)); 

Mg3 = simple(Mg3); 

% compute the spring and damper torque applied to each 
% axis using equations 22 and 23 

Tspl=-kl *ql*zl+k2*q2*z2; 
Tsp2=-k2* q2*z2+k3*q3*z3; 
Tsp3 = -k3 * q3 * z3; 

Tdal = -bl * qlp+b2 * q2p; 
Tda2 = -b2 * q2p + b3 * q3p; 
Tda3 = -b3 * q3p; 

% compute the projection vector n on the x-y plane 
% using equation 27 and 29 

[numl,denl,nl] = projpp(Clp , z1); 

[num2,den2,n2] = projpp(C2p, z2); 

[num3,den3,n3] = projpp(C3p, z3); 

[num4,den4,phil] = projpp(P2p, z1); 

[num5,den5,phi2] = projpp(P3p, z2); 

[num6,den6,phi3] = projpp(P4p, z3); 

[num5,den5,phi3p] = projpp(P4pp, z3); 

% compute the direct aerodynamic torques applied to 
% rotation axis using Equaiton 25 

Tae4 = Mae4 + xproduct(C4p, Fae4); 
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Tae4p = Mae4p + xproduct(C4pp, Fae4p); 

Tae3 = Mae3 + xproduct(C3p, Fae2); 

Tae2 = Mae2 + xproduct(C2p, Fae2); 

Tael = Mael + xproduct(Clp, Fael); 

% compute the aerodynamic tprque transmitted to the 
% teeter axis using Equation 30, note: mu4 = 1. 

Ttr4 =Tae4; 
Ttr4p = Tae4p; 
zeta4 = Fae4; 
zeta4p = Fae4p; 

% compute the total external torque applied to the 
% teeter axis,i.e. s = 3, using Equation 37. 

Tsum3 = Ttr4 + xproduct(P4p,zeta4) + Ttr4p + xproduct(P4pp,zeta4p) . . . 
+ Tsp3 + Tda3 + Tae3; 

% compute the effective torque at the teeter axis 

tau3 = Tsum3’ * Z3 + Tac3; 

% compute the force transmitted from the rotor to 
% the power train, i.e., s =3, using Equation 30 

tl = Fae3 - (1-mu3) * (Fae3 - (Fae3wn3)*n3 - (Fae3*z3)*z3); 
t2 = zeta4 - ( l-mu3) * (zeta4 - (zeta4’%3)*n3 - (zeta4*phi3)*phi3); 
t3 = zeta4p - (1 -mu3) * (zeta4p - (zeta4p’%3)*n3 - (zeta4p*phi3p)*phi3 p); 

zeta3 =tl +t2 +t3; 

~0 compute the torque transmitted from the rotor to 
% the power train, i.e., s =3, using Equation 39 

Ttr3 = Tsum3 - (1-mu3)*((Tsum3’ * z3)*z3); 

% compute the total external torque applied to the 
% azimuth axis,i.e. s =2, using Equation 37. 

Tsum2 = Ttr3 + xproduct(P3p,zeta3) + Tsp2 + Tda2 + Tae2; 
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% compute the effective torque at the teeter axis 

tau2 = Tsum2’ * Z2 + Tac2; 

?ZO compute the force transmitted from the power train to 
% the nacelle, i.e., s =2, using Equation 30 

zeta2 = (Fae2 + zeta3) - ( l-mu2) * . . . 

( . . . 
(Fae2+zeta3) - (Fae2Wn2)*n2 -... 
(zeta3Wphi2)*phi2 - ((Fae2 + zeta3)wz2)*z2 . . . 

); 

% compute the torque transmitted from the power train to 
% the nacelle, i.e., s =2, using Equation 39 

Ttr2 = Tsum2 - (1-mu2)*((Tsurn2’ * z2)*z2); 

% compute the total external torque applied to the 
% yaw axis,i.e. s = 1, using Equation 37. 

Tsuml = Ttr2 + xproduct(P2p,zeta2) + Tsp 1 + Tdal + Tael; 

% compute the effective torque at the teeter axis 

taul =Tsuml’*zl +Tacl; 

% compute the force transmitted from the nacelle to 
% the tower, i.e., s = 1, using Equation 30 

zetal = (Fael + zeta2) - (1-mul) * . . . 

( . . . 
(Fael+zeta2) - (Fael’%l)*nl -... 
(zeta2wphil)*phil - ((Fael + zeta2)wzl)*zl . . . 

); 

% compute the torque transmitted from the necelle to 
% the tower, i.e., s = 1, using Equation 39 

Ttrl = Tsuml - (1-mul)*((Tsuml’ * z1)*z1); 

% construct the EOMS using Equaiton 13 

LEOM1 =Mtl +Mrl +Mgl; 
REOM1 = taul; 
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LEOM2 = Mt2 + Mr2 + Mg2; 
REOM2 = tau2; 

LEOM3 = Mt3 + Mr3 + Mg3; 
REOM3 = tau3; 

% store the EOMS in a file 

delete(’case 12.eom’); 

diary case12.eom; 
display(lEOMs of Test Case 1.2’) 

display(fiertial torques (LHS) of EOM 1 ‘,); 
pretty(LEOM 1) 
display(’Extemal torques (RHS) of EOM 1 ‘); 
pretty(REOM 1) 
display(tiertial torques (LHS) of EOM 2’); 
pretty(LEOM2) 
display(’Extemal torques (RHS) of EOM 2’); 
pretty(REOM2) 
display(’hertial torques (LHS) of EOM 3’); 
pretty(LEOM3) 
display(~xtemal torques (RHS) of EOM 3’); 
pretty(REOM3) 

diary offl 

62 



Appendix D. EOMS for Test Case 1.2 

Inertial torques (LHS) of SOM 1 

485809 22 
12ZZ @~~ + ------ m5 q2pp - m5 q4p L5 cos(q4) sin.(q5) cos(q5) . . . 

10000 

2 2 
- m5 sin(q4) sin(q5) L5 q4pp cos(q5) - 15XX q2pp cos(q5) 

2 2 
15XX q2pp cos(q4) + Cos(qs) 15~ q2pp + cos(q4) I~zz q5PP 

2 2 2 2 
+ cos(q4) 1522 q2pp + m5 L5 q5pp cos(q4) + m5 L5 q2pp Cos(qs) 

2 2 2 2 2 
+ m5 L5 q2pp cos(q4) - m5 L5 q2pp cos(q4) Cos (qs ) 

+ 15yy q5p sin(q4) q4p + sin(q4) sin(q5) 15XX cos(q5) q4pp 

2 2 
- 15ZZ qqp q5~ sin(q4) + 15XX q2pp + 15XX q2pp cos(q4) - Cos (qs ) 

2 2 
- sm(q4) cos(q5) 15yy sin(q5) q4pp - cos(q5) 15yy q2pp cos(q4) 

2 
15XX q4p q5p sin(q4) + 15XX cos(q4) sin(q5) q4p Cos (q5) 

2 697 2 
- 15yy cos(q4) sin(q5) q4p Cos(qs) - --- m5 C5D cos(q4) sin(q5) L5 

100 - - 

2 2 697 
- 2 m5 L5 q4p q5p sin(q4) cos(qs) - --- m5 sin(q4) sin(q5) L5 q4pp 

100 

697 2 
--- m5 L5 q4p q5p sin(q4) cos(q5) - 2 m5 sin(q5) L5 q2p qsp Cos(qs) 
50 

697 697 
--- m5 sin(q5) L5 q2p q5p + --- m5 L5 a51)D 
50 

--- 
iOO 

697 2 697 
--- m5 q4p L5 cos(q4) sin(q5) + --- m5 L5 
100 50 

cos(q4) Cos(qs) 

q2pp cos(q5) 
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2 2 
+ 2 nt5 q2p L5 q5p cos(q4) cos(q5) sin(q5) 

2 
- 2 m5 sin(q4) L5 q2p q4p cos(q4) 

2 2 
+ 2 m5 sin(q4) L5 q2p q4p ctx.(q4) cm(qs) 

2 
- 2 15yy q5p sin(q4) q4p cos(q5) 

2 
- 2 sin(q5) 15XX cos(q5) q2p q5p cos(q4) 

+ 2 sin(q5) 15XX cos(q5) q2p q5p + 2 sin(q4) 15XX cos(q4) q2p q4p 

2 
- 2 sin(q4) 15XX cos(q4) q2p q4p co.s(q5) 

2 
+ 2 sin(q4) cos(q5) 15yy cos(q4) q2p q4p 

- 2 cos(q5) 15yy sin(q5) q2p q5p 

2 
+ 2 cos(q5) 15yy sin(q5) q2p q5p cos(q4) 

2 
- 2 cos(q4) 1522 sin(q4) q2p q4p + 2 15XX cos(q5) q5p sin(q4) q4p 

.>:- .; 
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External torques (RHS) of EOM 1 

tz7 - (-%6 + %5) L7 fx7 + (-%4 + %3) L7 fy7 

/ 697 
+ I-3 %2 + 3 sin(q2) sin(q5) - --- sin 

\ 100 

/ 697 
+ {-3 %1 - 3 cos(q2) sin(q5) + --- cos 

\ 100 

\ 
q2) I fx7 

/ 

\ 
q2) I fy7 + tz7p 

I 

- (-%6 - %5) L7 fx7p + (-%4 - %3) L7 fy7p 

+ (-3 %2 + 3 sin(q2) sin(q5)) fx7p + (-3 %1 - 3 cos(q2) sin(q5)) fy7p _ ( 
\ 

/ 
ltx7 - (%8 - %7) L7 fy7 + (-%6 + %5) L7 fz7 - 3 sin(q4) Cos(qs) fY7 
\ 

/ 697 \ 
+ ]3 %2 - 3 Sin(qz) Sin(q5) + ‘-- SlIl(q2)/ fz7 + tx7p - (.%8 + %7) L7 fy7~ 

\ 100 / 

+ (46 - %5) L7 fz7p - 3 sin(q4) cos(q5) fy7p 

+ (3 %2 - 3 sin(q2) sin(q5)) fz7p - k5 q5 sin(q2) sin(q4) 

\ / 
- b5 q5p sin(q2) sin(q4)/ sin(q2) sin(q4) - lty7 + (%8 - %7) L7 fx7 

I \ 

- (-%4 + %3) L7 fz7 + 3 sin(q4) cos(q5) fx7 

697 \ 
+ ~3 %1 + 3 cos(q2) sin(q5) - --- cos(q2) I fz7 + ty7p + (%8 + %7) L7 fx7p 

\ 100 I 

- (-%.4 - %3) L7 fZ7p + 3 Sln(q4) C0S(q5) fX7p 

+ (3 %1 + 3 cos(q2) sin(q5)) fz7p + k5 q5 cos(q2) sin(q4) 

\ / 
+ b5 q5p cos(q2) sin(q4) I cos(q2) sin(q4) + /tz7 - (-%6 + %5) L7 fx7 

I \ 

I 697 
+ (-%4 + %3) L7 fy7 + 1-3 %2 + 3 sin(q2) sin(q5) - --- sin(q2)} fx7 

\ 100 / 
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I 697 \ 
+ I-3 %1 - 3 cos(q2) sin(q5) + --- cos(q2) j fy7 + tz7p 

\ 100 / 

- (-%6 - %5) L7 fx7p + (-%4 - %3) L7 fy7p 

+ (-3 %2 + 3 sin(q2) sin(q5): 

- k5 q5 COS(q4) - b5 q5p COS 

%1 := sin(q2) cos(q4) cos(q5) 

%2 := cos(q2) cos(q4) cos(q5) 

. 

fx7p + (-3 %1 - 3 cos(q2) sin(q5)) fy7p 

\ \ 
q4)l cos(q4)l cos(q4) 

/ / 

LJ2 

%3 := (%1 + cos(q2) sin(q5)) sin(--- pi) 
360 

173 
%4 := (sin(q2) cos(q4) sin(q5) - cos(q2) cos(q5)) cos(--- pi) 

360 

173 
%5 := (-%2 + sin(q2) sin(q5)) sin(--- pi) 

360 

173 
%6 := (-cos(q2) cos(q4) sin(q5) - sin(q2) cos(q5)) COS(--- pi) 

360 

173 
%7 := sin(q4) cos(q5) sin(--- pi) 

360 

173 
%8 := sin(q4) sin(q5) cos(--- pi) 

360 

: 
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Inertial tOrq’UeS (LHS) of EOM 2 

2 2 2 
-m5 L5 q4pp COS(q5) - m5 sin(q4) sin(q5) L5 q2pp cos(q5) 

2 2 2 2 2 
- m5 sin(q4) L5 q2p cos(q4) cos(q5) + m5 sin(q4) L5 q2p Cos ( q4 ) 

- 15yy cos(q5) sin(q4) sin(q5) q2pp + 15yy q2p q5p sin(q4) 

2 2 
- 15yy cos(q4) cos(q5) q2p sin(q4) + 15XX cos(q5) sin(q4) sin(q5) q2pp 

2 
+ 1522 q2p q5p sin(q4) + 1522 sin(q4) q2p cos(q4) 

2 2 2 
- 15XX cos(q4) q2p sin(q4) + 15XX cos(q4) qzp sin(q4) cos(q5) 

2 
- 15XX q5p q2p sin(q4) + 2 m5 sin(q5) L5 q4p q5p cos(q5) 

2 2 2 
- 2 m5 sin(q4) L5 q2p q5p cos(q5) + 2 m5 sin(q4) L5 q2p q5p 

697 
--- m5 sin(q4) sin(q5) L5 q2pp + 2 15yy cos(q5) sin(q5) q4p q5p 
100 

2 2 
- 2 15yy q2p q5p sin(q4) cos(q5) + 2 15XX cos(q5) q2p q5p sin(q4) 

2 
- 2 15XX cos(q5) sin(q5) q4p q5p + 15yy q4pp + m5 L5 q4pp 

2 2 
- 15yy q4pp cos(q5) + 15XX cos(q5) q4pp - m5 g L5 cos(q4) sin(q5) 
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External torques (RHS) of EOM 2 

I 
ltx7 - (%8 - %7) L7 fy7 + (-%6 + %5) L7 fz7 - 3 sin(q4) cos(q5) fy7 + %10 

; 

\ 

+ tx7p - (%8 + %7) L7 fy7p + (-%6 - %5) L7 fz7p - 3 sin(q4) cos(q5) fy7p 

/ 
+ (3 %2 - 3 sin(q2) sin(q5)) fz7p - { (tx7 - (%8 - %7) L7 fy7 

+ (-%6 + %5) L7 fz7 - 3 sin(q4) cos(q5) fy7 + %10 + tx7p 

- (%8 + %7) L7 fy7p + (-%6 - %5) L7 fz7p - 3 sin(q4) cos(q5) fy7p 

+ (3 %2 - 3 sin(q2) sin(q5)) fz7p - k5 q5 sin(q2) sin(q4) 

- b5 q5p sin(q2) sin(q4)) sin(q2) sin(q4) - (ty7 + (%8 - %7) L7 fx7 

- (-%4 + %3) L7 fz7 + 3 sin(q4) cos(q5) fx7 + %9 + ty7p 

+ (%8 + %7) L7 fx7p - (-%4 - %3) L7 fz7p + 3 sin(q4) cos(q5) fx7p 

+ (3 %1 + 3 cos(q2) sin(q5)) fz7p + k5 q5 cos(q2) sin(q4) 

+ b5 q5p COS 

+ (-%4 + %3) 

I 
+ I-3 %1 - 3 

\ 

- (-%6 - %5) 

+ (-3 %2 + 3 

I 
q2) sin(q4)) cos(q2) sin(q4) + /tz7 - (-%6 + %5) L7 fx7 

\ 

I 697 \ 
L7 fy7 + I-3 %2 + 3 sin(q2) sin(q5) - --- sin(q2) I fx7 

\ 100 / 

697 \ 
cos(q2) sin(q5) + --- cos(q2) / fy7 + tz7p 

100 I 

L7 fx7p + (-%4 - %3) L7 fy7p 

sin(q2) sin(q5)) fx7p + (-3 %1 - 3 cos(q2) sin(q5)) fy7p 

1 \ \ / 
- k5 q5 cos(q4) - b5 q5p cos(q4)] cos(q4)l sin(q2) sin(q4)l cos(q2) + I 

/ I I \ 

ty7 + (%8 - %7) L7 fx7 - (-%4 + %3) L7 fz7 + 3 sin(q4) cos(q5) fx7 + %9 

+ ty7p + (%8 + %7) L7 fx7p - (-%4 - %3) L7 fz7p + 3 sin(q4) cos(q5) fx7p 

+ (3 %1 + 3 cos(q2) sin(q5)) fz7p + ((tx7 - (%8 - %7) L7 fy7 
\ 
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- (-%6 + %5) L7 fz7 - 3 sin(q4) cos(q5) fy7 + %10 + tx7p 

- (%8 + %7) L7 fy7p + (-%6 - %5) L7 fz7p - 3 si~(q4) CoS(q5) fY7p 

+(3%2- 3 Sln(q2) Sin(q5)) fz7p - k5 q5 sin(q2) sin(q4) 

- b5 q5p sin(q2) sin(q4)) sin(q2) sin(q4) - (ty7 + (%8 - %7) L7 fx7 

- (-%4 + %3) L7 fz7 + 3 Sln(q4) CoS(q5) fx7 + %9 + ty7p 

+ (%8 + %7) L7 fx7p - (-%4 - %3) L7 fz7p + 3 sin(q4) cos(q5) fx7p 

+ (3 %1 + 3 cos(q2) sin(q5)) fz7p + k5 q5 cos(q2) sin(q4) 

/ 
+ b5 q5p cos(q2) sin(q4)) cos(q2) sin(q4) + ltz7 - (-%6 + %5) L7 fx7 

\ 

I 697 \ 
+ (-%4 + %3) L7 fy7 + “I-3 %2 + 3 sin(q2) sin(q5) - ‘~- sin(q2) [ fx7 

+ {-3 %1 - 3 cos(q2) 
\ 

- (-%6 - %5) L7 fx7p 

+ (-3 %2 + 3 sin(q2) 

\ 100 / 

697 \ 
sin(q5) + --- cos(q2) I fy7 + tz7p 

100 / 

+ (-%4 - %3) L7 fy7p 

sin(q5)) fx7p + (-3 %1 - 3 cos(q2) sin(q5)) fy7p 

\ \ \ 
q5p cos(q4)l cos(q4)] cos(q2) sin(q4)[ sin(q2) + Tp - k5 q5 cos(q4) - b5 ( 

I / / 

%1 := sin(q2) cos(q4) cos(q5) 

%2 := cos(q2) cos(q4) cos(q5) 

173 
%3 := (%1 + cos(q2) sin(q5)) sin(--- pi) 

360 

173 
%4 := (sin(q2) cos(q4) sin(q5) - cos(q2) cos qs)) COS(--- pi) 

360 

173 
%5 := (-%2 + sin(q2) sin(q5)) sin(--- pi) 

360 

%6 := 
173 

(-C0S(q2) cos(q4) sin(q5) - sin(q2) cos(q5)) COS(--- pi) 
360 
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173 
%7 := sin(q4) cos(q5) sin(--- pi) 

360 

173 
%8 := sin(q4) sin(q5) cos(--- pi) 

360 

697 \ 
%9 := (3 %1 + 3 cos(q2) sin(q5) - --- cos(q2) \ fz7 

\ 100 / 

697 \ 
%10 ,={3 %2 - 3 sin(q2) sin(q5) + --- sin(q2)l fz7 

\ 100 I 
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Inertial torques (LHS) of EOM 3 

2 2 2 
2 m5 L5 q2p q4p sin(q4) cos(q5) - 2 m5 L5 q2p q4p 

697 2 2 
+ --- m5 q2p sin(q5) L5 + m5 L5 q2pp cos(q4) 
100 

2 2 2 2 
- m5 L5 q2p cos(q5) sin(q5) cos(q4) + m5 L5 

2 2 697 

2 
Sin(q4) + m5 L5 qspp 

2 
q2p cos(q5) sin(q5) 

- m5 q4p sin(q5) L5 cos(q5) + --- m5 q2pp cos(q4) L5 cos(q5) 
100 

- m5 g sin(q4) L5 cos(q5) - 15yy sin(q5) q4p2 cos(q5) 

2 2 2 
+ 15YY cos(q5) q2p sin(q5) - 15yy cos(q5) q2p sin(q5) cos(q4) 

2 
+ 2 15yy coS(q5) q4p q2p sin(q4) - 15yy sin(q4) q2p q4p 

2 
+ 15XX sin(q5) q4p cos(q5) - 1522 q2p q4p sin(q4) + 15XX q4p q2p sin(q4) 

2 2 
- 2 15XX q4P q2p Sln(c14) COS(q5) - 15XX cos(q5) q2p sin(q5) 

2 2 
+ 15XX cos(q5) q2p sin(q5) cos(q4) + 15ZZ q5pP + 1522 cos(q4) q2pp 
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External torques (RHS) of EOM 3 

/ 
\tx7 - (%8 - %7) L7 fy7 + (-%6 + %5) L7 fz7 - 3 sin(q4) Cos(qs) fY7 
\ 

/ 697 \ 
+13%2- 3 Sln(q2) Sln(q5) + ‘-- Slll(q2) I fz7 + tx7p - (%8 + %7) L7 fY7P 

\ 100 I 

+ (-%6 - %5) L7 fz7p - 3 sin(q4) cos(qs) fy7p 

+ (3 %2 - 3 sin(q2) sin(q5)) fz7p - k5 q5 sin(q2) Sin(qq) 

\ / 
- b5 q5p sin(q2) sin(q4)l sin(q2) sin(q4) - lty7 + (%8 - %7) L7 fx7 

- (-%4 + %3 

/ 
+ /3 %1 + 3 

\ 

/ \ 

L7 fz7 + 3 sin(q4) cos(qs) fx7 

697 \ 
cos(q2) sin(q5) - ‘-- COS(q2) I fZ7 + ty7p + (%8 + %7) L7 fx7p 

100 / 

- (-%4 - %3) L7 fz7p + 3 sin(q4) cos(q5) fx7p 

+ (3 %1 + 3 cos(q2) sin(q5)) fz7p + k5 q5 cos(q2) sin(q4) 

\ / 
+ b5 q5p cos(q2) Sln(q4) I cos(q2) sin(q4) + ltz7 - (-%6 + %5) L7 fx7 

I \ 

/ 697 \ 
+ (-%4 + %3) L7 fy7 + I-3 %2 + 3 sin(q2) Sin(qs) - --- Sln(qz) 1 fx7 

\ 100 I 

+ {-3 %1 - 
697 \ 

3 cos(q2) sin(q5) + --- cos(q2)l fy7 + tz7p 
\ 100 / 

- (-%6 - %5) L7 fx7p + (-%4 - %3) L7 fy7p 

+ (-3 %2 + 3 sin(q2) sin(q5)) fx7p + (-3 %1 - 3 cos(q2) sin(q5)) fy7p 

\ 
- k5 q5 cos(q4) - b5 q5p cos(q4)l cos(q4) 

/ 
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%1 := sin(q2) cos(q4) cos(q5 

%2 := Cos(qz) cos(q4) cos(q5 

%3 := (% I + cos(q2) sin(q5)) 
173 

sin (--- pi) 
360 

%4 := 
173 

(sin(q2) cos(q4) sin(q5) - cos(q2) cos(q5)) cos(--- pi) 
360 

173 
%,5 := (-%2 + sin(q2) sin(q5)) sin(--- pi) 

360 

173 
%6 := (-cos(q2) cos(q4) sin(q5) - sin(q2) cos(q5)) cos(--- pi) 

%7 := sin(q4) cos 

%8 := sin(q4) sin 

360 

173 
q5) sin(--- pi) 

360 

173 
q5) COS(--- pi) 

360 
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Appendix E. Matlab M Files Used in Test Cases 1.1 and 1.2 

function h = dhmat(alpha,a,theta,d) 

% dhmat(alpha,a,theta,d) 
% - This function generates a symbolic 4x4 configuration 
% matrix relating the configuration of the i-th frame to 
‘%0 the (i- 1 )-th frame in the homogeneous coordinate system 
% using the Denavit-Hartenberg notation. 
% 
% Input: alpha - twist angle, in radian (v), 
% a - link length (u), 
% theta - joint angle, in radian (t), 
% d - link offset (w). 
% 

VO Kung Chris Wu 
% Symbolic toolbox 2.0 

v=sym(alpha); 
u=sym(a); 
t=sym(theta); 
w=sym(d); 

h =[ Cos(t), -sin(t), 
sin(t) *cos(v), cos(t)*cos(v), 
sin(t) *sin(v), cos(t)*sin(v), 

o, 0, 

function R = hom2rot(T) 

o, u;... 
sin(v), -sin(v) *w;... 
Cos(v), COS(V)*W;... 

o, 1]; 

YO horn2rot(T) - This function extracts the symbolic 3x3 rotation 
% matrix R from a 4x4 matrix T in the homogeneous 
% coordinate system. 
% 
% Input: T - a symbolic 4x4 matrix 
% 
% Kung Chris Wu 
% Symbolic Toolbox v2.O 

fori=l:3 
forj=l:3 

R(i,j) = T(i,j); 
end 
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end 

function w = wtextc(T,n) 

% wtextc(T,n) - This function extracts the first 3 elements of the 
% n-th column from the input matrix T. 
% 
% inputs: T a 3x3 rotation or a 4x4 configuration 
% matrix, 
% n column index 
% 
% output: w a 3x 1 vector. 
% 
% Kung Chris Wu 
% Symbolic Toolbox v2.O 

fori=l:3 
w(i,l) = T(i,n); 

end 

function v = xproduct(a,b) 

% xproduct(a,b) - This function computes the crorss product 
% of two 3x 1 vectors. 
% 
% Input: a,b - symbolic 3x 1 vectors 
% 
$10 Kung Chris Wu 
% Symbolic Toolbox v2.O 

S = [0, -a(3,1), a(2,1);a(3,1),0,-a( l,l);-a(2,1),a( l,l),0]; 
v= S*b; 
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function [num,den,n] = projpp(c,z) 

% projpp(c,z) - this function finds the projection of the vector 
‘% c on the plane (x-y plane) perpendicular to the 
% vector z 
% 
% It returns a unit vector. 
% 
% Kung Chris Wu 
c = sym(c); 
z = sym(z); 
num=c-(c’*z) *z; 
num = simple(num); 
den = num’ * num; 
den = simple(den); 
den = sqrt(den); 
if (num == sym([O;O;O]) ) 

n = num; 
else 

n = num./ den; 
n = simple(n); 

end 

. 
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‘7 Analytical Model of 
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Figure 1. Block diagram of a HAWT with pitch and yaw controllers. 
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Figure3. Block diagram ofa HAWTwhen viewed asanopen-chain kinematic linkage. 
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Figure6. Atwo-bladed, teetered rotor HAWTwith seven 
rotation axes. Notice that each blade can have 
3-DOF with respect to the hub at the root point. 
The 3-DOF root joint is modeled as three 1 -DOF 
Joints mutually perpendicular to each other. The 
offset distances between these joints are zero. 
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Zi 

m 
w 

Figure 8. This figure illustrates the notation used in Chapter 3. The right subscript indicates 
which link the point belongs. Right and left superscripts are used to indicate the 
frame used to measure and express the position vectors, respectively. For example, 
Ci+l and ‘Ci+l are position vectors for same point C on the link i+l. Ci+l is 
measured and expressed with respect to the inertial frame. ‘Ci+l is measured and 
expressed with the { i } -th frame. The * indicates a point measured within its own 
coordinate system, but can be expressed with respect to any other frame. For 
example, C*i+l is the same vector as ‘+iC*i+l, but expressed w.r.t. the inertial frame, 
i.e., C*i+l = ‘Ri+l ‘+lC*i+l . 
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Springs and dampers are used to model Figure 10. Aerodynamic forces and moments are 
structural stiffness and damping. assumed to be point forces acting through the 

center of mass of each link. Notice that the 
resulting torques at the joints are not 
necessarily parallel to the joint axis. 
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